
Python Task:  Crypto     d

Confederacy’s cipher disk

This task is about cryptography. The task and this writeup are from Harvard’s CS50.

Caesar’s cipher encrypts (i.e., scrambles in a reversible way)  messages by “rotating” 
each letter by k positions, wrapping around from 'Z' to 'A' as needed:

http://en.wikipedia.org/wiki/Caesar_cipher

In other words, if p  is  some  plaintext  (i.e., an unencrypted message), pi is  the ith 
character  in p, and  k  is  a  secret  key  (i.e.,  a  non-negative  integer),  then  each  
letter,  ci,  in  the  ciphertext,  c,  is computed as:

ci = (pi + k) %  26

This formula perhaps makes the cipher seem more complicated than it is, but it’s really 
just a nice way of expressing the algorithm precisely and concisely.  

For example, if the secret key is 1, then the cipher text is shifted 1 character from the 
plain text:

plain	 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
cipher	B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 
>>> rotate(13)
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So if I wanted to encrypt the message ‘DOG’ I see that ‘D’ should be encrypted as E, 
‘O’ should be encrypted as ‘P’ and ‘G’ should be encrypted as ‘H’

For another example, suppose that the secret key, k, is 13. The relationship of the plain 
and cipher characters are

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 

If my message,  p, is “be sure to drink your Ovaltine.”  

Let’s encrypt that p with  that k  in  order  to  get  the  ciphertext, c, by rotating each of 
the letters in p by 13 places:

plaintext:  Be sure to drink your Ovaltine!
ciphertext: Or fher gb qevax lbhe Binygvar!

We’ve deliberately printed the above in a monospaced font so that all of the letters line 
up nicely.  Notice how O  (the  first  letter  in  the  ciphertext)  is  13  letters  away  from 
B  (the  first  letter  in  the plaintext).  Similarly is r  (the  second  letter  in  the  
ciphertext)  13  letters  away  from e  (the  second letter in the plaintext).  Meanwhile, f  
(the  third  letter  in  the  ciphertext)  is 13  letters  away  from s (the third letter in the 
plaintext), though we had to wrap around from 'Z' to 'A' to get there.  And so on.  Not 
the most secure cipher, to be sure, but fun to implement!

Incidentally, a Caesar cipher with a key of 13 is called ROT13.

Your task is to write two functions, encrypt, and decrypt.

Encrypt
The function encrypt will take two arguments, a string and an integer k. The output 
should be text with each alphabetical character rotated k positions.

Although there exist only 26 letters in the English alphabet, you may not assume that k 
will be less than or equal to 26. Your program should work for all non-negative values of 
k. If k is greater than 26 you should still have alphabetical characters in the output. For 
example, if k is 27. ‘A’ should not become ‘[‘ even though ‘[‘ is 27 positions away from 
‘A’. Instead ‘A’ should become ‘B’ since 27 modulo 26 is 1.

For full XP you program must work with both upper and lower case letters and preserve 
case: capitalized letters should remain capitals and lower case remain lower case. 
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Decrypt
The function decrypt will take two arguments, a string and an integer k.  The string has 
been encrypted using the key k. This function returns the decrypted string.

Submit
Attach the file containing your functions to an email message sent to 
submit.o.bot_AT_gmail_DOT_com. 

Grading
60XP: a encrypt function that encrypts messages in all caps
additional 20XP for handling messages in upper and lower case.
additional 20XP for decrypt function.
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hacker edition

Hacker edition: Vigenère’s cypher
Well that last cipher was hardly secure. Fortunately, there’s a more sophisticated 
algorithm out there: Vigenère’s. It is, of course, French:

http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Vigenère’s cipher improves upon Caesar’s by encrypting messages using a sequence 
of keys (or, put another way, a keyword). In other words, if p is some plaintext and k is a 
keyword (i.e., an alphabetical string, whereby A and a represent 0, while Z and z 
represent 25), then each letter, ci, in the ciphertext, c, is computed as:

ci =(pi +kj)%26

Note this cipher’s use of kj as opposed to just k. And recall that, if k is shorter than p, 
then the letters in k must be reused cyclically as many times as it takes to encrypt p.

Here’s an example. Suppose my keyword is dog and the plaintext I want to encrypt is 
poodle. 

First, let’s start with dog. If ‘a’ is represented by 0 then d is 3, o is 14, and g is 6.

I will do the same with poodle as shown in the first 2 columns of this table:

plain
text

ord(ch) key
word

ord
key

word

ch + keyword 
% 26

Cypher
text

p 15 d 3 18 s

o 14 o 14 2 c

o 14 g 6 20 u

d 3 d 3 6 g

l 11 o 14 25 z

e 4 g 6 10 k
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Next I will write repeatedly the keyword next to the plain text (the key word column in 
the above) and also indicate the character number (the ord key word column)

Now I am going to add the following:

The p  in poodle (character 15) to the d in dog (character 3) = 18   % 26 = 18
The o  in poodle (character 14) to the o in dog (character 14) = 28  % 26 = 2
The o  in poodle (character 14) to the g in dog (character 6) = 20 % 26 = 20
The d  in poodle (character 3) to the d in dog (character 3) = 6  % 26 = 6
The l  in poodle (character 11) to the o in dog (character 14) = 25 % 26 = 25
The e  in poodle (character 4) to the g in dog (character 6) = 10  % 26 = 10

Finally, I convert these numbers back to characters to get the encrypted text: scugzk

Your final challenge this week is to write a function that encrypts messages using 
Vigenère’s cipher.  This function must take a single argument: a keyword, keyword, 
composed entirely of alphabetical characters.  

def vignere(keyword):

Your program must proceed to prompt the user for a string of plaintext,  which it must 
then encrypt according to Vigenère’s cipher with keyword, ultimately printing the result.  
As for the characters in keyword, you must treat A and a as 0, B and b as 1, . . . , and Z 
and z as 25. In addition, your program must only apply Vigenère’s cipher to a character 
in plaintext if that character is a letter.  All other characters (numbers, symbols, spaces, 
punctuation marks, etc.) must be outputted unchanged.  Moreover, if your code is about 
to apply the j th character of keyword to the i th character of plaintext, but the latter 
proves to be a non-‐alphabetical character, you must wait to apply that j th character of 
keyword to the next alphabetical character in plaintext; you must not yet advance to the 
next character in keyword. Finally, your program must preserve the case of each letter 
in plaintext.  Not sure where to begin? As luck would have it, this program’s pretty 
similar to caesar! Only this time, you need to decide which character in keyword to use 
as you iterate from character to character in plaintext. 

How to test your program, besides predicting what it should output, given some input?  
Well, recall that I am a nice person. And so I have written a program that is available at 

http://rosemary.umw.edu/~raz/vignere

That page also allows you to play with my own implementation of vigenere.
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