Cryptography Project Walkthrough

Python 2.7 edition

Cryptography Regular Edition

- Implement Caesar Cipher
- both encrypt and decrypt functions

Hacker Edition

- regular edition +
- Vigenère's Cipher
- (vision-a

Confederate cipher disk

Caesar cipher:

plain text | A | B | C | D | E | F | G | H | I | J | \ldots | Z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

encrypted	A	B	C	D	E	F	G	H	I	J	\ldots	Z

$k=$ how much to shift

Caesar cipher:

plain text \quad| A | B | C | D | E | F | G | H | I | J | \ldots | Z |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

encrypted | | A | B | C | D | E | F | G | H | I | J | K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

bed
hide

$$
k=1
$$

Caesar cipher:

\[

\]

$$
k=5
$$

encrypt: cafe
fig

basic idea in English

- each letter represented by a number
$A=0, B=1 \ldots Z=25$
- p_{i} is the $i^{\text {th }}$ letter of the plain text.
- c_{i} is the $i^{\text {th }}$ letter of the cipher text
- k is the secret key, a non-negative number-- how much to shift.

the formula

$$
\begin{aligned}
& \text { - } c_{i}=\left(p_{i}+k\right) \\
& \text { - any problems? (think my last name) }
\end{aligned}
$$

the revised formula

$$
\text { - } c_{i}=\left(p_{i}+k\right) \quad \% 26
$$

Doing it by pencil:

plain text

0	1	2	3	4	5	6	7	8	9	\ldots	25
A	B	C	D	E	F	G	H	I	J		Z

$$
\begin{array}{ll}
& c_{i}=\left(p_{i}+k\right) \% 26 \\
k=5 & \text { encrypt cafe } \\
k=2 & \text { encrypt hide }
\end{array}
$$

Doing it by Python:

plain text | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \ldots | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F | G | H | I | J | | Z |

$$
\begin{aligned}
& c_{i}=\left(p_{i}+k\right) \quad \% 26 \\
& k=5 \text { encrypt cafe } \\
& \text { >>> word = 'CAFE' } \\
& \text { >>> } \\
& \text { >>> ch = word[0] } \\
& \text { >>> ch } \\
& \text { 'C' } \\
& \text { >>> ord(ch) } \\
& 67 \\
& \text { >>> ord(word[1]) } \\
& 65 \\
& \text { >>> }
\end{aligned}
$$

Doing it by Python:

plain text

0	1	2	3	4	5	6	7	8	9	\ldots	25
A	B	C	D	E	F	G	H	I	J		Z

$$
\begin{aligned}
& c_{i}=\left(p_{i}+k\right) \quad \% 26 \\
& \text { >>> word = 'CAFE' } \\
& \text { >>> } \\
& \text { >>> ch = word[0] } \\
& \text { >>> ch } \\
& \text { 'c' } \\
& k=5 \quad \text { encrypt cafe } \\
& \text { >>> ord(ch) } \\
& 67 \\
& \text { >>> ord(word[1]) } \\
& \text { A is } 65 \text { but we want it to be } 0
\end{aligned}
$$ C is 67 but we want 2

Doing it by Python:

plain text

0	1	2	3	4	5	6	7	8	9	\ldots	25
A	B	C	D	E	F	G	H	I	J		Z

$$
\begin{aligned}
c_{i}=\left(p_{i}+k\right) \quad \% 26 & \begin{array}{l}
\text { >>> word = 'CAFE' } \\
\\
\text { >>> } \\
\text { >>> ch }
\end{array} \\
& \text { >>> word [0] }
\end{aligned}
$$

Doing it by Python:

plain text

0	1	2	3	4	5	6	7	8	9	\ldots	25
A	B	C	D	E	F	G	H	I	J		Z

Doing it by Python:

plain text | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \ldots | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | C | D | E | F | G | H | I | J | |

for the cipher text we want characters

$$
\begin{array}{llll}
7 & 5 & 10 & 9
\end{array}
$$

how do we turn these back to ascii?

Doing it by Python:

plain text | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \ldots | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | C | D | E | F | G | H | I | J | |

for the cipher text we want characters

$$
\begin{array}{llll}
7 & 5 & 10 & 9
\end{array}
$$

>>> ord(word[0])
67
>>> ord(word[1])
65
>>> ord(word[2])
70
>>> ord(word[3])
add 65:

72707574

Doing it by Python:

plain text | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \ldots | 25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | B | C | D | E | F | G | H | I | J | |

Finally, convert these ASCII numbers back to characters

$$
72 \quad 707574
$$

$$
\begin{aligned}
& \text { >>> } \operatorname{chr}(72) \\
& \text { 'H' } \\
& \text { >>> } \operatorname{chr}(70) \\
& \text { ' } \mathrm{F}^{\prime} \\
& \text { >>> } \operatorname{chr}(75) \\
& \text { 'K' } \\
& \text { >>> } \operatorname{chr}(74) \\
& \text { 'J' }
\end{aligned}
$$

Sweet!!

questions?

encrypt

def encrypt(plaintext, k):

encrypt

def encrypt(plaintext, k): result $=$ ''
\# step 1: loop over each character \# in the string

encrypt

def encrypt(plaintext, k):

 result $=$ ''\# step 1: loop over each character
\# in the string
for ch in plaintext:
result $+=$ ch

encrypt

def encrypt(plaintext, k): result $=$ ''
\# step 1: loop over each character \# in the string
for $c h$ in plaintext:
result += ch
\# step 2: output each encoded \# letter making sure not to \#encode non letters.

encrypt

def encrypt(plaintext, k):

 result $=$ '' \# step 1: loop over each character \# in the stringfor ch in plaintext:
result $+=$ ch
\# step 2: output each encoded \# letter making sure not to \#encode non letters.
Should work for upper and lower case letters

$$
A=65 \quad a=97
$$

decrypt

def decrypt(ciphertext, k):

 result = ''\# step 1: loop over each character \# in the string
for ch in plaintext:
result $+=$ ch

decrypt

def decrypt(ciphertext, k): result = ''
\# step 1: loop over each character \# in the string
for ch in plaintext:
result += ch
\# step 2: output each decoded \# letter making sure not to \# decode non letters.

Keep in mind

- capitalization must be preserved
- letters should never become symbols
- symbols should not be changed

Hacker edition

Vignère's Cipher

Vignère's Cipher

rotate each letter by a different amount

Just do encrypt

def vignere(plaintext, keyword):

vignere("POODLE", "DOG")

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	18	19															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	O	R

P	O	O	D	L	E

vignere("POODLE", "DOG")

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	18	19															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	O	R

P	O	O	D	L	E
D	O	G	D	O	G

vignere("POODLE", "DOG")

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	18	19															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	O	R

15	14	14	3	11	4
D	O	G	D	O	G

vignere("POODLE", "DOG")

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	18	19															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	O	R

20	21	22	23	24	25
U	V	W	X	Y	Z

15	14	14	3	11	4
3	14	6	3	14	6

vignere("POODLE", "DOG")

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	18	19															
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	O	R

20	21	22	23	24	25
U	V	W	X	Y	Z

(plain + key $) \% 26$

15	14	14	3	11	4
3	14	6	3	14	6
18	2	20	6	25	10

vignere("POODLE", "DOG")

									${ }_{11} 1$	12					
				E F		H	J	K	L M	M	O	P			

20	21	22	23	24	25
U	V	W	X	Y	Z

(plain + key $) \% 26$

15	14	14	3	11	4
3	14	6	3	14	6
18	2	20	6	25	10
S	C	U	G	Z	K

how to test your program

http://rosemary.umw.edu/~raz/vignere

Due

Sunday 11 November 11:59pm

submit.o.bot@gmail.com

