
Exploring Sorting e

First, download the file sorting.py from our website. The file contains a working version
of Bubble Sort.

Here is how to test it.

>>> a = make_a_list(8)
>>> a
[64, 72, 94, 33, 84, 51, 32, 20]
>>> bubblesort(a)
>>> a
[20, 32, 33, 51, 64, 72, 84, 94]
>>>

So, in this example I assign the variable a to be equal to a list of length 8. I then call
Bubble Sort on a. It actually changes the value of a. So when bubblesort is completed,
list a is sorted.

Task 1. Answers to Questions
Your first task is to answer the four questions mentioned in the sorting.py file.

Task 2. Selection Sort
You are to implement Selection Sort.

Task 3. Merge -- merges 2 sorted lists
You are to implement merge which takes two sorted lists as arguments. For example if a
and b are the following lists:

>>> a
[20, 32, 33, 51, 64, 72, 84, 94]
>>> b
[45, 56, 57, 61, 68, 68, 75, 80]
>>>

then merge(a, b) will return:

>>> merge(a, b)
[20, 32, 33, 45, 51, 56, 57, 61, 64, 68, 68, 72, 75, 80, 84, 94]

I have the start of that function in sorting.py. Simply delete the occurrences of
print(‘TODO’) and replace it with the correct code. Alternatively, you can write the
function from scratch.

Task 4: Merge Sort
Implement the mergesort sort method described in class. For this sort method, it is
easier to return a sorted list, rather than sort the list in place.

Task 5: Timing

Do some experiments and fill in the following table with the number of seconds it takes
to execute the following:

Numbers to sortNumbers to sortNumbers to sort

1024 5120 10240

Bubble Sort

Selection Sort

Merge Sort

Task 6
Explain the results from Task 5. Do they agree with what we would expect given what
we know about their big O values?

SUBMITTING
Submit this sheet with the answers for Task 1, Task 5, and Task 6 and the file sorting.py
with the code for the other tasks to submit.o.bot_AT_gmail_DOT_com.

