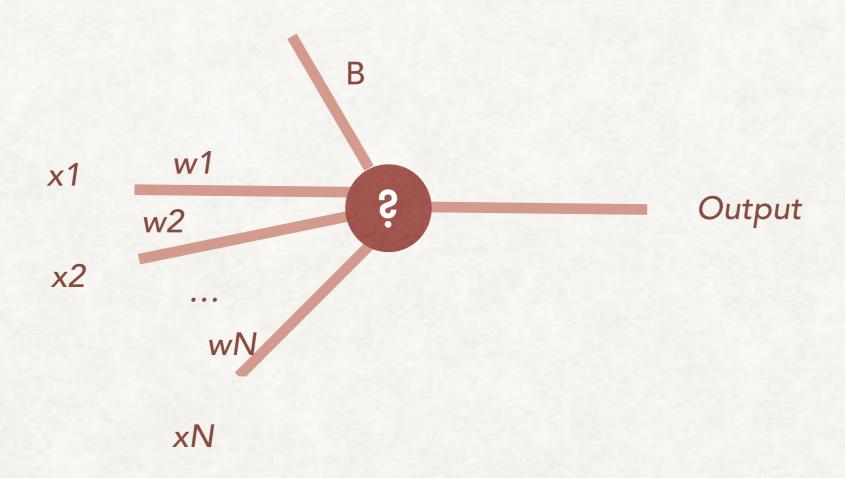
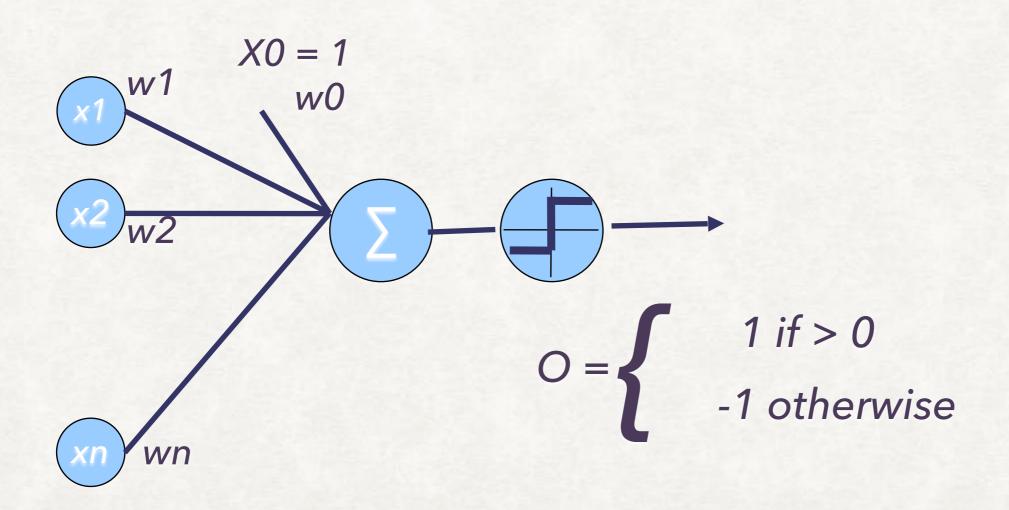
MORE ON NEURONS

Activation Functions



ONE NEURON OR PERCEPTRON



Sigmoid, Tanh, ReLU Neurons

(trying to make things nonlinear)

SIGMOID

$$f(z) = \frac{1}{1 + e^{-z}}$$

```
[>>> f(-10)

4.539786870243442e-05

[>>> f(-5)

0.006692850924284857

[>>> f(5)

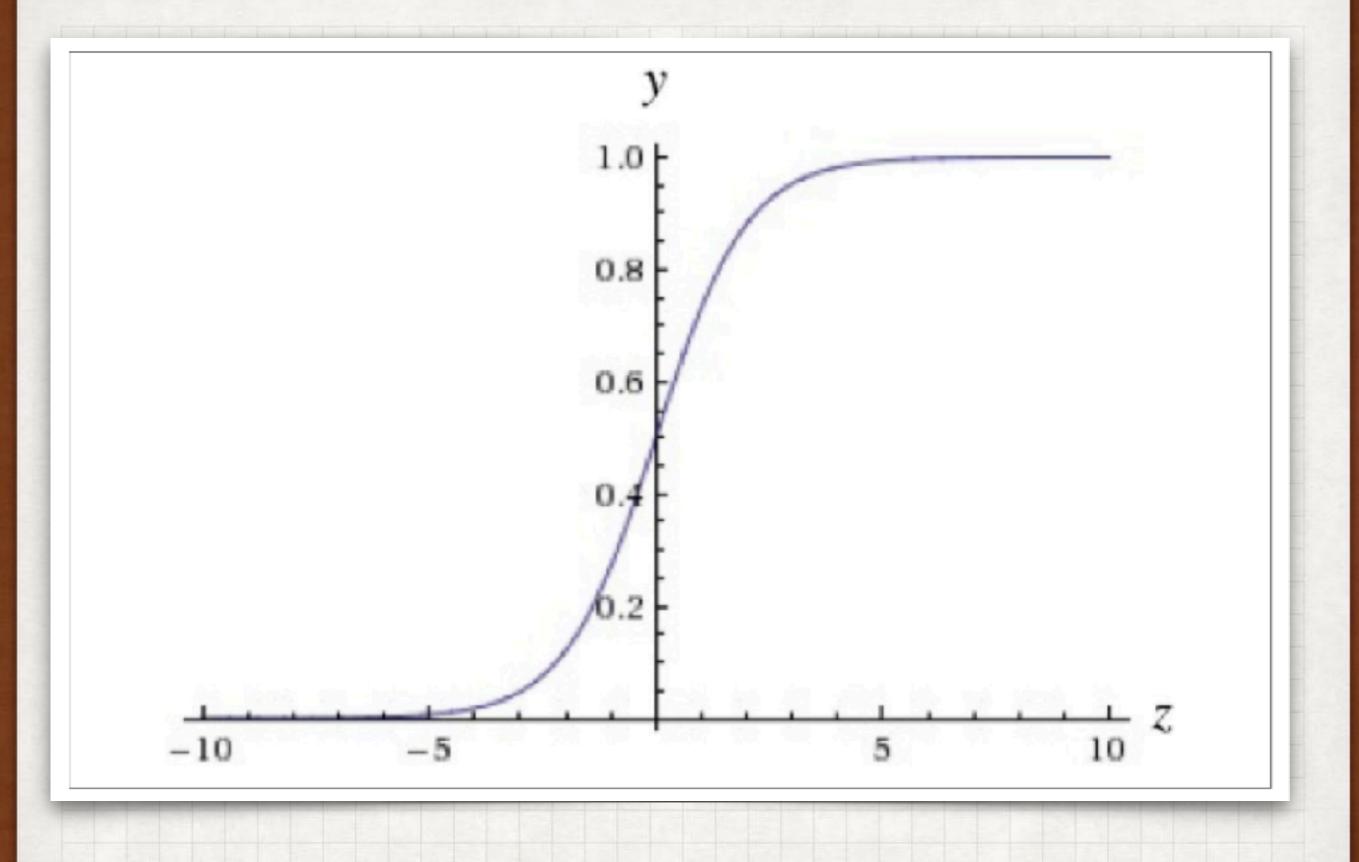
0.9933071490757153

[>>> f(10)

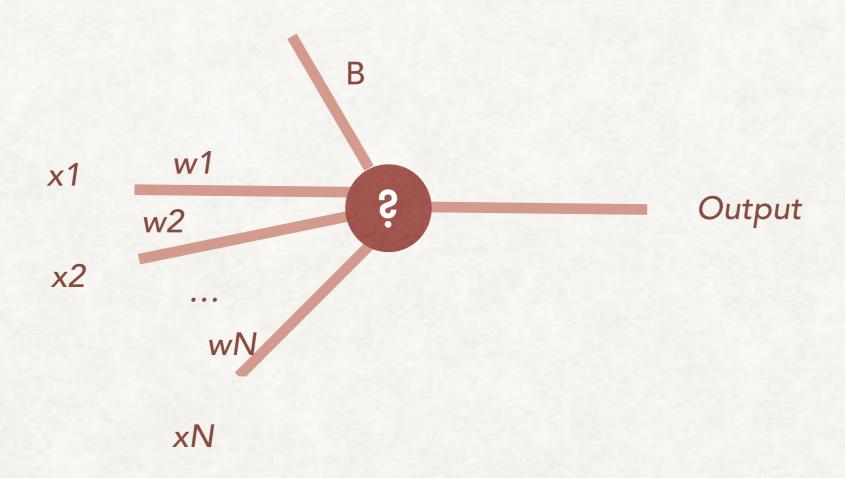
0.9999546021312976

>>> ■
```

Intuitively, this means that when the logit is very small, the output of a logistic neuron is very close to 0. When the logit is very large, the output of the logistic neuron is close to 1. In-between these two extremes, the neuron assumes an S-shape

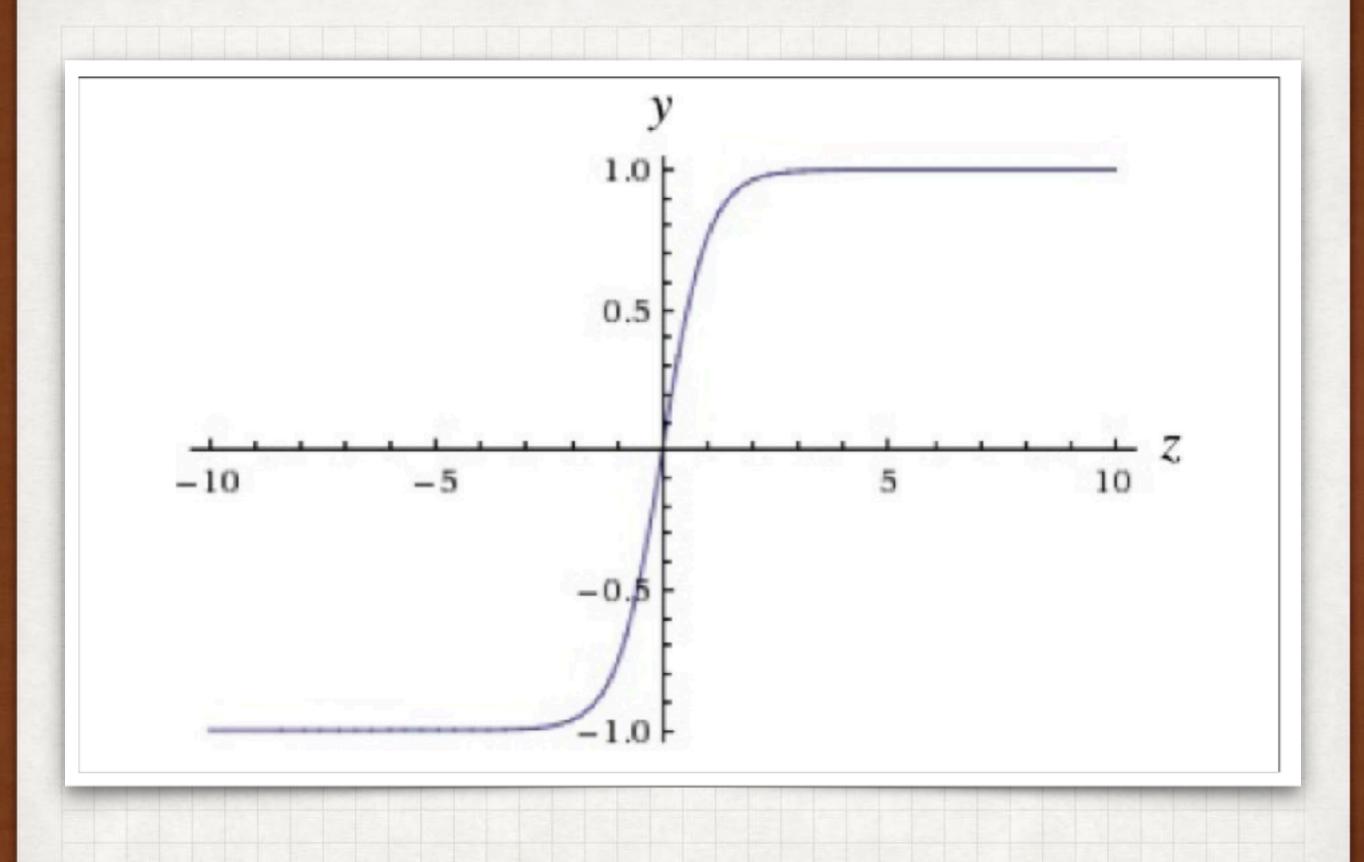


Activation Functions



TANH

SIMILAR BUT INSTEAD OF 0 TO 1 RANGES FROM -1 TO 1



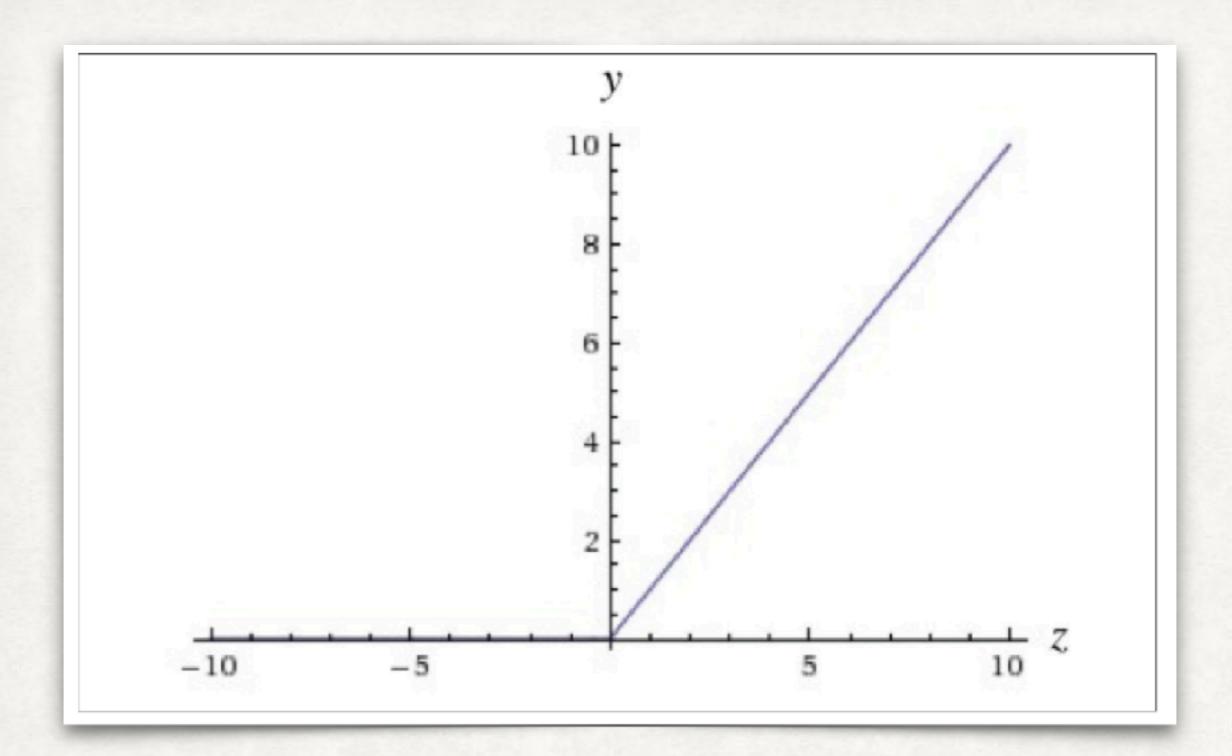
ReLU

RESTRICTED LINEAR UNIT NEURON

$$f(z) = \max(0, z)$$

Hockey stick shaped pattern

"The neuron of choice especially for computer vision"



All the above work for all neurons regardless of layer
They don't depend on any other neuron

Softmax Output Layers

$$y_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

- Y = tf.nn.softmax(tf.matmul(XX, W) + b)
- Only output layer
- Depends on all other output neurons
- Probability distribution

$$y_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

front 8, side 24, back 12, front corner 3

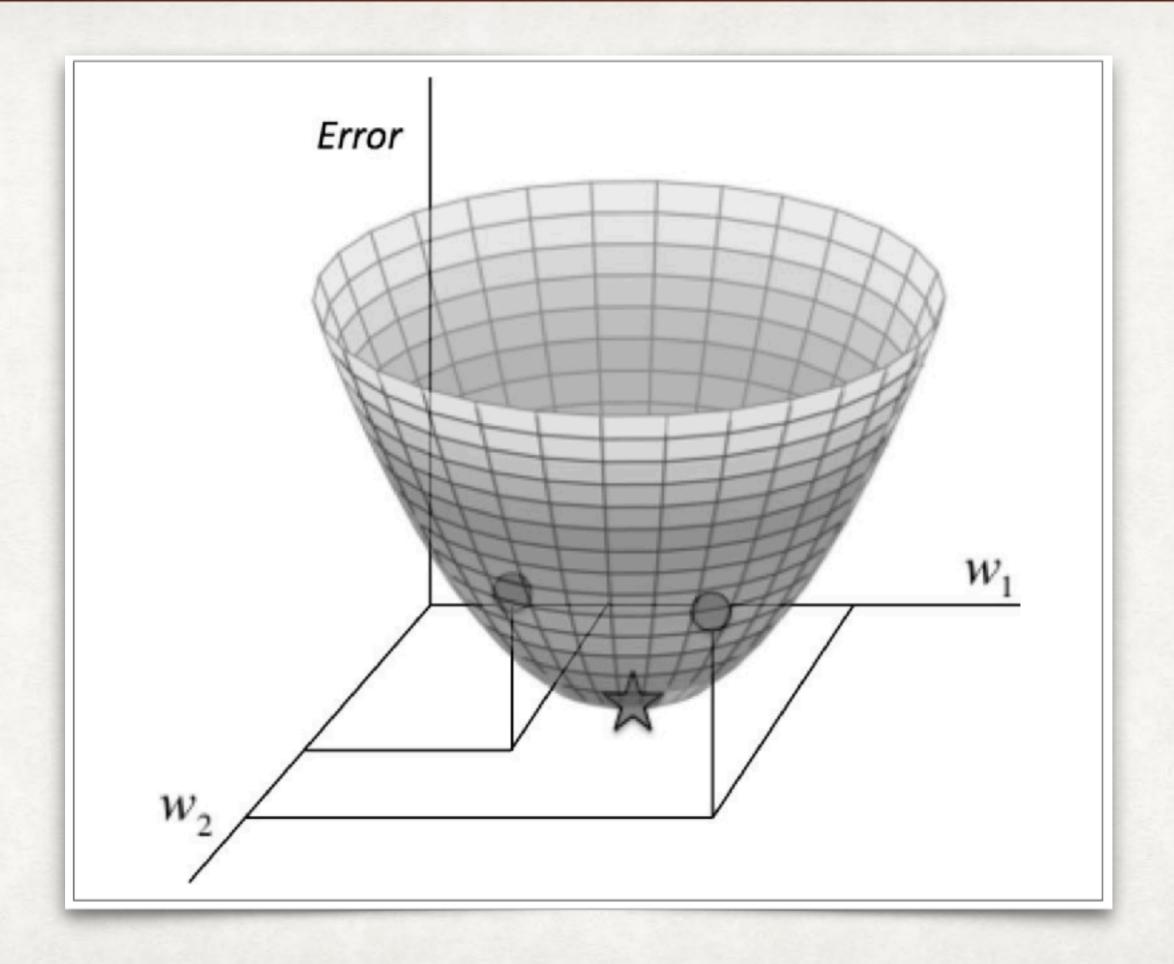
```
>>>
[>>> import numpy as np
[>>> image = np.array([8,24,12,3])
[>>> ytemp = math.e**image
[>>> yi = ytemp / np.sum(ytemp)
[>>> sum(yi)
0.999999999999999
```

```
[>>> yi
array([1.12534471e-07, 9.99993743e-01, 6.14417391e-06, 7.58251298e-10])
>>>
```

```
55 # The model
56 Y = tf.nn.softmax(tf.matmul(XX, W) + b)
57
```

train_step = tf.train.GradientDescentOptimizer(0.005).minimize(cross_entropy)

A foggy mountain



DELTA RULE

$$\Delta w_k = \sum_i \epsilon x_k^{(i)} (t^{(i)} - y^{(i)})$$

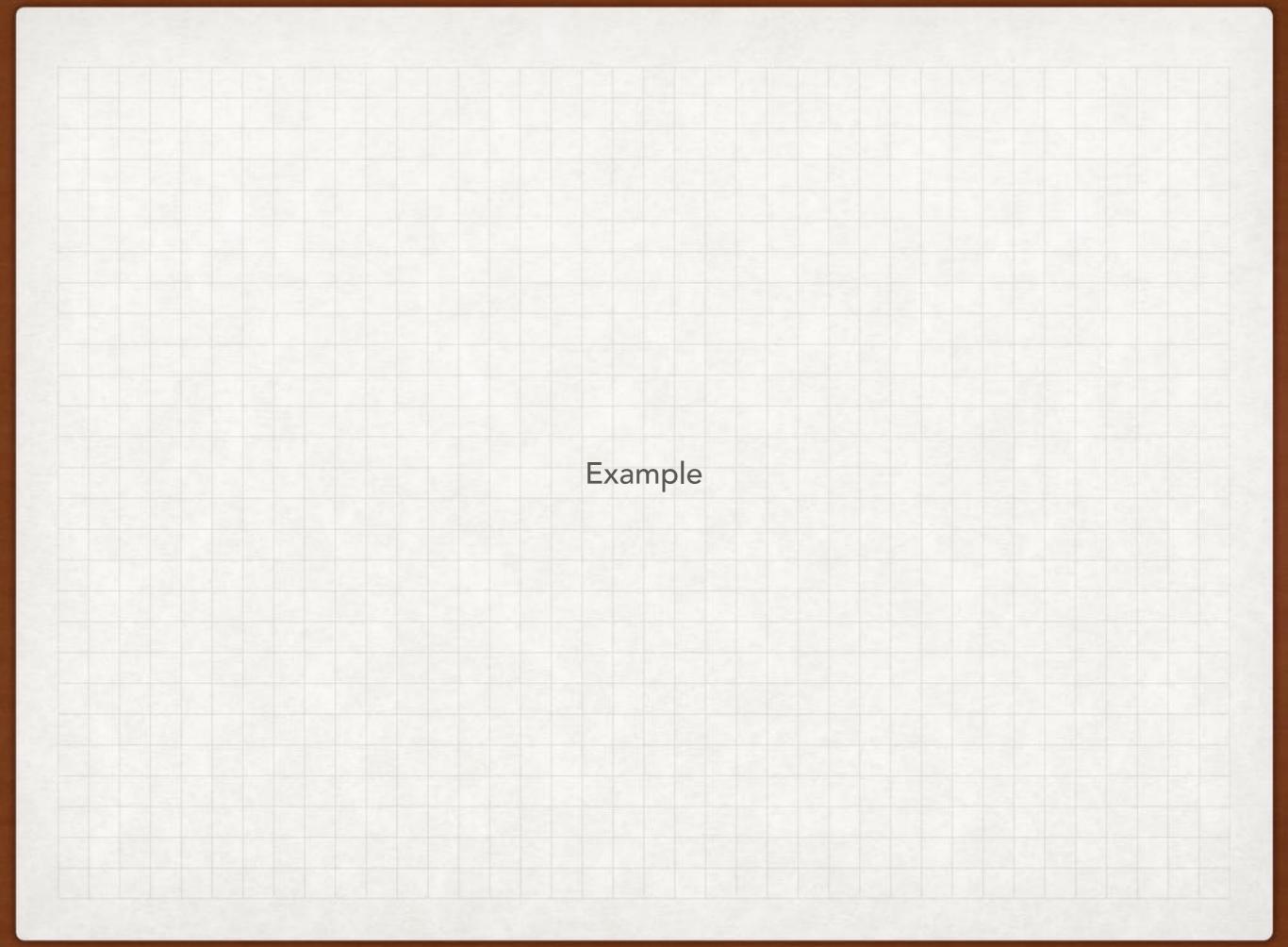
- tⁱ is the true answer for the i^{th} training example
- yⁱ is the prediction our neural network made for the i^{th} training example
- xⁱ is the input value
- epsilon is the learning rate

DELTA RULE

$$\Delta w_k = \sum_i \epsilon x_k^{(i)} (t^{(i)} - y^{(i)})$$

If the neural network correctly predicted this example

- tⁱ is the true answer for the i^{th} training example
- yⁱ is the prediction our neural network made for the i^{th} training example
- xⁱ is the input value
- epsilon is the learning rate



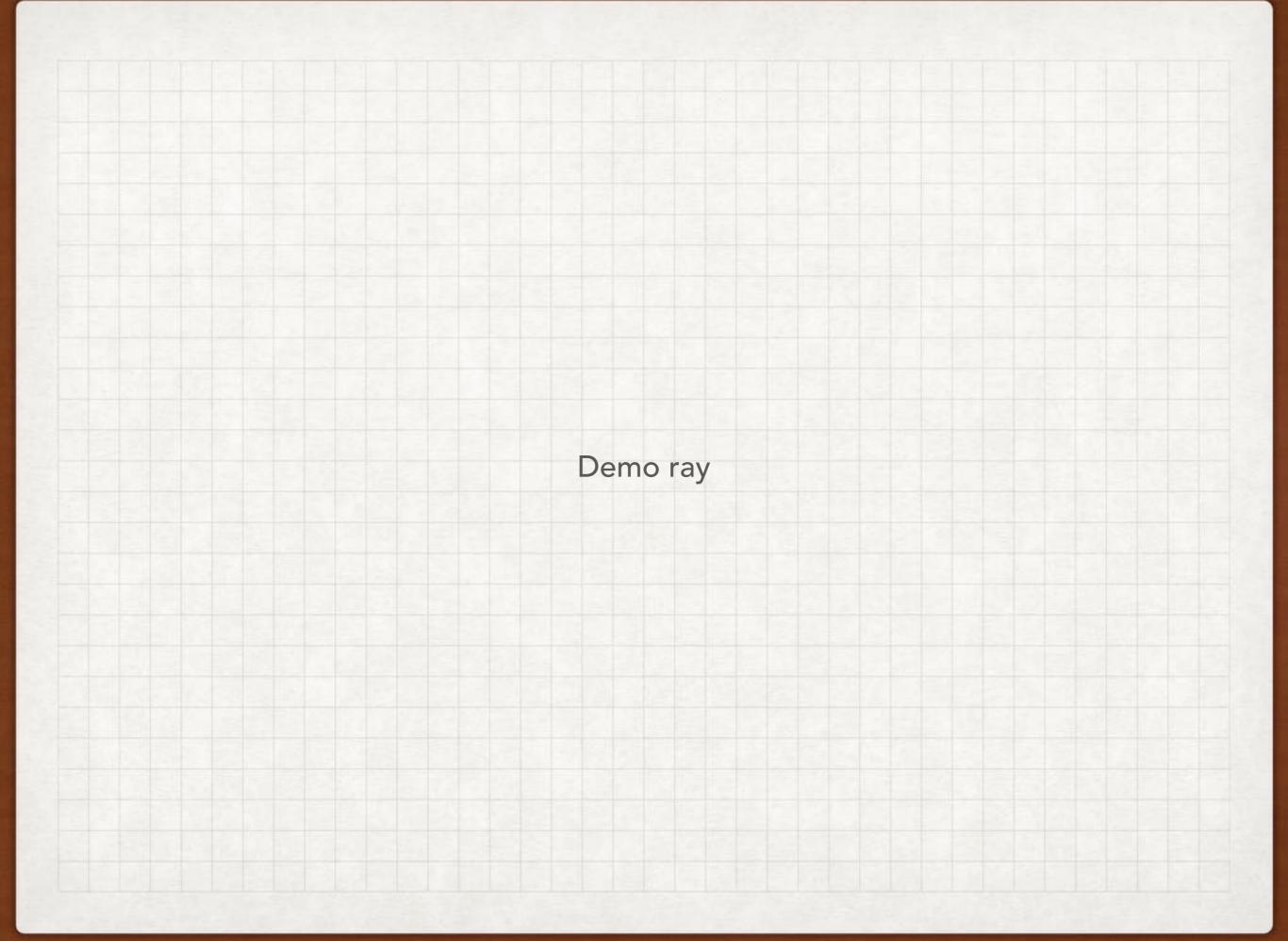
DELTA RULE

Error

$$\Delta w_k = \sum_i \epsilon x_k^{(i)} (t^{(i)} - y^{(i)})$$

If the neural network correctly predicted this example

- tⁱ is the true answer for the i^{th} training example
- yⁱ is the prediction our neural network made for the i^{th} training example
- xⁱ is the input value
- epsilon is the learning rate



TEAM TASK

EVERYONE IN TEAM MODIFY RAY.PY

- Don't need to print the biases
- Run the training step 1001 times
- Every 10th training step print the accuracy and loss
- Every 100th run the test data and print the epoch accuracy
- Visualize the graph in tensor board
- Be able to explain every line in the program.
- Congratulations You've mastered single layer NN!!