
University of Mary Washington

CPSC405 Introduction to Operating Systems Fall 2012

FINAL EXAM

• This exam is due 2:30pm on Tuesday 11 December. You are
to submit the exam to the gmail address submit.o.bot. If
your exam is delivered after this deadline, it will not be
accepted.

• Your exam submission can be in one of three formats:

• plain text file
• pdf
• postscript

No other formats will be accepted.

• This test is to be completed individually without outside
help. This includes no help from peers or the Internet. You
are free to use any resources used for the class including
the textbook, handouts, and any class notes you made. If
there is evidence that any part of the exam was completed
with outside help you will receive a 0 for the entire exam.

• To discourage guessing and brain-dump style answers you
will receive 20% of the XP for problems you leave
completely blank. If you attempt a problem you start at zero
XP. By problem I mean any numbered problem--
subproblems do not count. This means that if you attempt
one part of a problem it is best to answer the remaining
parts. If you are less than 100XP away from the grade you
desire for the class you can submit a blank exam and you
will receive 100XP. (Keep in mind that the minimum score
you can receive for the exam is 0)

Part 1. Short Answer (20 XP per problem)

PROBLEM 1
You are working as part of a team on an iPad app that enables users to fill out claim
forms on their iPads. The data is stored remotely on your company’s servers. To
improve robustness, the team decides to implement transactions. There are three
competing ideas as to where to store the transaction log:

• on the server’s disk
• in memory on the server
• in persistent memory on the iPad.

Please provide your opinions about these options.

PROBLEM 2
Before Rosemary, and in fact, before computer science was a separate department
from Math, the department had a single machine called Sage, used for classroom
instruction. Once the department had more than a dozen majors, students complained
about the slow response time. The department bought an identical second machine
and split the students equally between the machines. Oddly enough, students’ response
time got better by much more than a factor of two. What is the most likely reason for
such a phenomenal speedup?

PROBLEM 3
The following code contains a monitor lock and condition variables. There are two types
of threads that use this class: black threads and white threads. Black threads call on a
frequent but random interval the black method, white ones call on a frequent but
random interval the white method. Please describe what this class does.

class Shared:
 def __init__(self, start=0, capacity = 10):
 self.lock = Lock()
 self.MAX = capacity
 self.itemAdded = Condition(self.lock)
 self.itemRemoved = Condition(self.lock)
 self.nFull = 0

 def isFull(self):
 return True if self.nFull == MAX else False

 def isEmpty(self):
 return True if self.nFull == 0 else False

 def white(self):
 self.lock.acquire()
 while(self.isEmpty()):
 self.itemAdded.wait()
 self.nFull -= 1
 self.itemRemoved.notify()
 self.lock.release()

 def black(self):
 self.lock.acquire()
 while(self.isFull()):
 self.itemRemoved.wait()
 self.nFull += 1
 self.itemAdded.notify()
 self.lock.release()

PROBLEM 4
You are designing an operating system for an autonomous spacecraft. The application
programs that will run on the OS are of three types: critical, normal, and background.
Critical tasks are to enjoy better response time than normal tasks which in turn will enjoy
better response time than background tasks. You are to design such a system so that all
tasks will still get some progress, but with the indicated preferences in place.

1. Will a fixed priority scheme with pre-emption and 3 fixed priorities work? Why, or
why not?

2. Will a UNIX-style multi-feedback queue work? Why, or why not?

3. If none of the above works, could you design a scheduling scheme that meets the
 requirements?

PROBLEM 5
Consider the following hard disk:

RPM 7200

Heads/Platters 6/3

sector size 4096 bytes

sectors per track 1024

cylinders 131,072

seek time ~ 0 ms if tracks adjacent
otherwise 1 + .003 * t where t is
the number of tracks that the
disk is seeking over

What is the storage capacity of the disk in gigabytes? To get credit you must show your
work.

What is the sequential transfer bandwidth expressed in bytes/second or megabytes/
second? Explain briefly (for ex., show your work)

PROBLEM 6
Consider two computer systems which are identical except for the following
characteristics.

Mustang-A Mustang-B

L3 Cache

Main Memory

16MB 4MB

4GB 16GB

Please explain under what circumstances Mustang-A would be the preferred purchase,
and under what circumstances Mustang-B would be.

PROBLEM 7
You are the virtual memory guru on an team designing an operating system for a tablet.
The OS will provide a kernel mode and facilities to enter kernel mode on interrupt,
exception, and trap. Unfortunately, the RISC chip you are using has only primitive virtual
memory support-- it has two base registers and two bounds registers for applications
and a separate pair of base and bounds registers when in kernel mode. The hardware
has no paging support. Unfortunately, all of the application software relies on 8
segments spread across a sparse address space. How could you modify the OS to
support applications that require multiple segments per address space using this
hardware?

PROBLEM 8
Consider the following experiment and explain the observations.
A program is run by itself on a paging machine. The program begins execution with its
first procedure page. As it runs, the pages it needs are demand paged into available
page frames. There is a dial external to the computer that allows a person to set the
maximum number of page frames the program may use. In addition there is an LED
display that indicates the total number of page faults that occurred during program
execution. Initially, the dial is set to 2 frames and the program is run to completion. The
dial is then set at 3 frames and again the program is run to completion. This process is
continued until the dial is eventually set to the number of available pages in real
storage, and the program is run for the last time. For each run, the execution time and
number of page faults is recorded

Observation 1:
As the dial is changed from 2, to 3, to 4, the number of page faults declines. As the dial
is changed to 5 the number of page faults rises. From 5 to 6 and onward, the number of
page faults again declines.

Observation 2 (a completely separate study):
For a different program we follow the same procedure. As the dial is changed from 2, to
3, to 4, the execution time improves dramatically. From 4, 5, to 6, the execution time still
improved each time, but less dramatically. With the setting of 7 and higher the execution
time is essentially constant.

PROBLEM 9
You are designing a file system from scratch. The disk driver allows you complete
control over the placement of data on the disk. Assuming that you have settled for a File
Allocation Table (FAT) architecture, where would be the best place to store the table on
disk?

PROBLEM 10
We are designing an operating system for a mobile device that uses a single core cpu.
A member of our team says that we do not need to provide support for threads since
multithreading would have no benefit on a single core CPU. Do you agree? Briefly
explain.

PROBLEM 11
In our user level thread project we called getcontext in both ULT_Yield and
ULT_CreateThread. For each of these functions, explain what specific changes we
needed to make to the data structure returned by getcontext before adding it to the
queue.

Part 2.

PROBLEM 1 (35XP)
Consider a 32-bit virtual address divided up as follows:

Here are the relevant tables (values in hexadecimal):

4 bit outer page number 12 bit inner page number 16 bit offset

Outer Page TableOuter Page Table
0 Page Table A
1 Page Table B
x (rest invalid)

Page Table APage Table A
0 CAFE
1 DEAD
2 BEEF
3 BA11
x rest invalid

Page Table BPage Table B
0 F000
1 D8BF
x (rest invalid)

Find the physical address corresponding to each of the following virtual addresses
(answer ʻbad addressʼ) if the virtual address is invalid)

1. 0x00000000

2. 0x20022002

3. 0x10015555

4. 0x10030099

PROBLEM 2 (50XP)
I run a company that rents out stunt dogs for movies. In this problem you will need to
implement a monitor to help film production companies (modeled as threads)
synchronize access to my 100 dogs and 50 handlers. Here are the constraints:

The relationship between handlers and dogs is that handler 0 can handle dogs 0 and 1,
etc. That is, handler h works with dogs 2h and 2h + 1.

If a handler is being used with one dog, she cannot be used to handle another

A film production company requests a particular dog (which implies the need for a
particular handler). However, there may be more production companies than dogs. If a
company wants a particular dog, but can’t get either that dog or its handler, it waits until
the dog and handler are available. When a production company finishes with a dog, the
monitor should notify any production companies that are waiting for the handler that she
is now free.

You must allow multiple dogs to be out working at once, and you must not have busy
waiting or spin loops.

Again, there may be many, many instances of film production companies (running in
their own threads), all of which use the same monitor, mon.

In the skeleton code provided, please fill in the monitors remaining variable(s) and
implement the monitor’s get_handler() and return_handler() methods.

class Monitor:
 def __init__(self, numberOfHandlers):
 self.lock = Lock()
 ## ADD ANY OTHER VARIABLES YOU NEED HERE
 self.handlers = []
 for i in range(numberOfHandlers):
 self.handlers.append(‘FREE’)

 def get_handler(self, desired_handler):
 ## FILL IN THIS FUNCTION

 def return_handler(self, desired_handler):
 ## FILL IN THIS FUNCTION

PROBLEM 3 (35XP)
Consider the following virtual memory architecture for a 32-bit processor for a game
console.

• Each page is 2KB (211 bytes)
• Physical memory is 32GB (235 bytes)2**10
• The paging system has an outer page table / inner page table design. Each process

has an outer page table. Entries in the outer page table point to inner page tables.
• There are 1024 entries in the outer page table
• Associated with each virtual page are 7 bits in the page table. These include 3 bits

controlled by the kernel (PTE_P, PTE_U, PTE_W), 2 bits by the hardware (accessed

and dirty) and two bits reserved for the kernel.

1. what is the minimum number of bits in an inner page table entry and explain briefly.
2. what is the total size of an inner page table (pad each entry to the nearest byte)
3. what is the minimum number of bits in an outer page table entry and explain briefly.
4. Consider changing the design so that instead of the address space being byte

addressable it is word addressable (where a word equals 2 bytes). How does this
affect the above design?

PROBLEM 4 (35XP)

Suppose 5 jobs arrive nearly simultaneously into an empty ready queue in a system
with a single CPU core (The order is P0, P1, P2, P3, P4). The following Gantt chart
shows the result from RR scheduling.

P0 P1 P2 P3 P4 P0 P1 P2 P4 P0 P2 P0

 10 20 30 38 48 58 60 70 80 90 93 95

The times indicated are associated with the vertical lines on the Gantt chart. (The
timeline is not to scale). The last job completes at time 95.

1. What is the quantum size (q) for this example?

2. Calculate the job sizes in this example

3. Draw the Gantt chart for RR with q=20; FCFS, and Shortest Remaining Time First.

PROBLEM 5 (40XP)

One day famed University of Mary Washington student Ada Codeslinger had an
inspiration while stuck in traffic. She observes that most programs have most of their
data at the beginning of the address space. For her homegrown Eagle OS, she decides
that she is going to implement her page tables similar to the way Unix implements
inodes. She calls this page table design Inode Page Tables. Inode Page Tables are
essentially two-level page tables with the following twist: The first half of the page table
entries in the master page table directly map physical pages, and the second half of the
entries map to secondary page tables as normal. Call the first half the entries fast, and
the second half normal.

For the following questions, assume that addresses are 32 bits, the page size is 4 KB,
and that the master and secondary page tables fit into a single page.

1 How many virtual pages are fast pages?

2 How many virtual pages are normal pages?

3 What is the maximum size of an address space in bytes?

4 Inode Page Tables reduce the lookup time for fast pages by one memory read
operation.
 Do you think that this is an effective optimization? Briefly explain.

PROBLEM 6 (35XP)

Suppose a program references pages in the following sequence

ACBDBAEFBFAGEFA

1. Show how LRU-based paging would fault pages if it has 4 pages of physical memory.

2. Show how the optimal paging algorithm would fault pages if it has 4 pages of physical
memory.

3. In the more general case, assume the reference string is of length p and m in the
number of frames of physical memory.
What is the upper bound on the number of page faults?
What is the lower bound?

PROBLEM 7 (50XP)
Because of the rising fuel costs more people are riding bikes to the development
company I work at. Jim Cowie, my boss, installs a small locker room so people can take
a shower and change clothes before work. Jim wants to design a shared object system
for the door that enforces the following synchronization constraints:

* There cannot be men and women in the locker room at the same time
* There should never be more than 3 employees squandering company time in the
locker room.

Of course your solution should avoid deadlock and starvation. Please design the shared
object using locks and condition variables.

