
Pointers and Memory
An extremely powerful concept

Monday, August 27, 12

With great power comes
great responsibility

Monday, August 27, 12

With great power comes
great responsibility

•bad pointerism can lead to

•extremely ugly crashes

•difficult to debug glitches

•random crashes

Monday, August 27, 12

Have you used pointers before?

Why have pointers?

Monday, August 27, 12

Have you used pointers before?

Why have pointers?

• Pointers allow different sections of code to share
information easily.

• Pointers enable complex ‘linked’ data structures

Monday, August 27, 12

Simple variables

42iCount

An int variable is like a box
which can store a single int

value

Monday, August 27, 12

Pointers

•Don’t store value directly

•Instead, stores a reference
to another value (the
pointee)

Monday, August 27, 12

pointers

42iCount

piCurrent

A simple int variable. Current val. 42

A pointer variable.
Current value is a reference to iCount

Monday, August 27, 12

The magic wand of
dereferencing

42iCount

piCurrent

How do I follow a pointer’s reference to get the value of
the pointee?

Monday, August 27, 12

The null potion

piCurrent

How do I point to nothing?

C: NULL (constant 0)
C++: 0
Java: null

Monday, August 27, 12

The magic wand
of pointer assignment

•The assignment operator (=)
between 2 pointers makes them
point to the same pointee.

42iCount

piCurrent

piFoo

piFoo = piCurrent

Monday, August 27, 12

SHARING:
two pointers referring to a single
pointee are said to be sharing.

2 entities share a single memory
structure

42iCount

piCurrent

piFoo

piFoo = piCurrent

Monday, August 27, 12

Shallow and Deep Copying

•How do functions pass values?

A()

B()

A()

B()

Shallow/Sharing

Deep/Copying

Monday, August 27, 12

Bad pointers

•Every pointer starts off bad.

•Must use magic to make it
“good”

•Bad pointer errors are very
common.

@*&*%$piFoo

Monday, August 27, 12

Bad pointers

•Every pointer starts off bad.

•Must use magic to make it
“good”

•In the video, this caused
Blinky to explode.

@*&*%$piFoo

Monday, August 27, 12

Bad pointers

•In C pointers are inherently
bad.

•In Java, Perl, and Lisp
pointers are inherently good
(set to null)

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

1. the pointer must be allocated

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

1. the pointer must be allocated
2. the pointee must be allocated

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

1. the pointer must be allocated
2. the pointee must be allocated
3. the pointer must be assigned to point to the pointee

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

1. the pointer must be allocated
2. the pointee must be allocated
3. the pointer must be assigned to point to the pointee
4. people rarely screw up (1)

Monday, August 27, 12

That’s everything conceptually you need to know about pointers

Monday, August 27, 12

<syntax>

Monday, August 27, 12

Syntax

•A pointer type in C is just
the pointee type followed by
*

int *
float *
char *

Monday, August 27, 12

Syntax

•A pointer type in C is just
the pointee type followed by
*

int *
float *
char *

Monday, August 27, 12

Variables

int * piFoo; /* starts off bad */

allocates space for the pointer
but not the pointee
pointer starts out “bad”

Monday, August 27, 12

The & operator
(reference to)

void numPtrExample() {
int iCount;
int* piFoo;

iCount = 42
piFoo = &iCount;

The & computes a reference to the variable

Monday, August 27, 12

The & operator
(reference to)

void numPtrExample() {
int iCount;
int* piFoo;

iCount = 42
piFoo = &Count;

42iCount

piFoo

Monday, August 27, 12

The & operator
(reference to)

It is possible to use &
in a way that compiles
fine but creates a
problem @ run time....

more on this later

42iCount

piFoo

Monday, August 27, 12

The * operator dereferences

void pointerTest() {
int ia = 1;
int ib = 2;
int ic = 3;
int* pi1;
int* pi2;

Monday, August 27, 12

The * operator dereferences

void pointerTest() {
int ia = 1;
int ib = 2;
int ic = 3;
int* pi1;
int* pi2;

@*&*%$

@*&*%$

pi1

pi2

1

2

3

ia

ib

ic

Monday, August 27, 12

The & operator provides a reference to

pi1 = &ia;
pi2 = &ib;

 pi1

pi2

1

2

3

ia

ib

ic

Monday, August 27, 12

The * operator dereferences

pi1 = &ia;
pi2 = &ib;

ic = *pi1; /* what does this do?*/

 pi1

pi2

1

2

3

ia

ib

ic

Monday, August 27, 12

The * operator dereferences

pi1 = &ia;
pi2 = &ib;

ic = *pi1; /* what does this do?*/

 pi1

pi2

1

2

1

ia

ib

ic

Monday, August 27, 12

The * operator dereferences

pi1 = &ia;
pi2 = &ib;

ic = *pi1;
pi1 = pi2;
pi1 = 13; / ???? */

 pi1

pi2

1

2

1

ia

ib

ic

Monday, August 27, 12

The * operator dereferences

pi1 = &ia;
pi2 = &ib;

ic = *pi1;
pi1 = pi2;
*pi1 = 13;

 pi1

pi2

1

13

1

ia

ib

ic

Monday, August 27, 12

Another example

void pointerEx2() {
int* piFoo;
*piFoo = 42;
}

Monday, August 27, 12

Another example

void pointerEx2() {
int* piFoo;
*piFoo = 42;
}

@*&*%$piFoo

Monday, August 27, 12

Summary

•A pointer stores a reference
to its pointee. The pointee,
in turn, stores something
useful.

Monday, August 27, 12

Summary

•The dereference operation on
a pointer accesses its
pointee.

•A pointer may only be
dereferenced after it has
been assigned to refer to a
pointee.

•Most pointer bugs involve
violating this rule.

Monday, August 27, 12

Summary

•Allocating a pointer does not
automatically assign it to
refer to a pointee.

•Assigning the pointer to
refer to a specific pointee
is a separate operation which
is easy to forget.

Monday, August 27, 12

Summary

•Assignment between two
pointers makes them refer to
the same pointee which
introduces sharing.

Monday, August 27, 12

<Local Memory>

Monday, August 27, 12

Everyone uses _____________
but no one thinks about them.

Monday, August 27, 12

Everyone uses local variables
but no one thinks about them.

Monday, August 27, 12

You have a bunch of local
variables in your code

int ilength;
int isum;
float fFrequency;
int itotal;
int iItemsSold;

All these represent space in
computer memory

Monday, August 27, 12

You have a bunch of local
variables in your code

int ilength;
int isum;
float fFrequency;
int itotal;
int iItemsSold;

All these represent space in
computer memory

It’s not the case that every
variable in a program has a
permanently assigned area of memory

Monday, August 27, 12

You have a bunch of local
variables in your code

int ilength;
int isum;
float fFrequency;
int itotal;
int iItemsSold;

Modern compilers are smart enough to
give memory to a variable only when
necessary

The terminology is allocate and
deallocate

Monday, August 27, 12

The most common memory related error is using a
deallocated variable.

Monday, August 27, 12

Local Memory

int Square(int inum) {
int iresult;
iresult = inum * inum;
return iresult;
}

When the square function runs, memory
is allocated for inum and iresult.

When the function exits, the storage
is deallocated.

Monday, August 27, 12

void Foo(int ifoo) {
int i;
float fScores[100];
ifoo = ifoo + 1;
for (i = 0; i < ifoo; i++)
{
Bar(i + ifoo);

}

}

ifoo, i, fScores, allocated when Foo runs.

These variables continue to exist within the for loop.

They continue to exist even during calls to other fns.

The locals are deallocated when the fn. exits

Monday, August 27, 12

a slightly more complex example

Monday, August 27, 12

void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

}

Monday, August 27, 12

1

2

ifoo

ibar

X()

T1
void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

}

Monday, August 27, 12

1

2

ifoo

ibar

X()

T2
void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

} 1

3

iarg

isum
Y()

Monday, August 27, 12

1

2

ifoo

ibar

X()

T3
void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

}

Monday, August 27, 12

1

2

ifoo

ibar

X()

T4
void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

} 2

4

iarg

isum
Y()

Monday, August 27, 12

1

2

ifoo

ibar

X()

T5
void X() {
int ifoo = 1;
int ibar = 2;
// T1

Y(ifoo);
// T3

Y(ibar);
//T5
}

void Y(int iarg)
{
int isum;
isum = iarg + 2;
//T2 (1st time) T4 (2nd)

}

Monday, August 27, 12

Advantages of Locals

•Convenient- fns. usually need
temp. memory.

•efficient - allocating and
deallocating fast

•local copies - maintains
independence

Monday, August 27, 12

Disadvantages of Locals

•Short lifetime - sometimes
want things to last beyond
life of fn.

•Restricted Communication
(flipside of independence)

Monday, August 27, 12

Example

// Returns pointer to int
int * piMakeNode() {
 int itemp = 0;
 return (&itemp);

}

void Victim() {
 int * piFoo;
 piFoo = piMakeNode();
 *ptr = 42;

}

Monday, August 27, 12

Example

Is there a problem?

// Returns pointer to int
int * piMakeNode() {
 int itemp = 0;
 return (&itemp);

}

void Victim() {
 int * piFoo;
 piFoo = piMakeNode();
 *ptr = 42;

}

Monday, August 27, 12

Comment on This Example

int ifactorial(int i) {
 int inum;
 inum = i * ifactorial(i - 1);
 return inum;
}

int main() {
 int inumber;
 inumber = ifactorial(5);
 printf("num %d\n",inumber);
}

Predictions? Show demo

Monday, August 27, 12

Example

Stack Overflow Error
Segmentation Fault

int ifactorial(int i) {
 int inum;
 inum = i * ifactorial(i - 1);
 return inum;
}

int main() {
 int inumber;
 inumber = ifactorial(5);
 printf("num %d\n",inumber);
}

Monday, August 27, 12

<reference parameters>

Monday, August 27, 12

Caller-Callee Communication

•Caller can pass info to
callee using parameters and
local variables.

•Callee can pass info to
caller only through return
values

•This might be too limited.

Monday, August 27, 12

Bill Gates Net Worth
int iB(int iworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(inetWorth);
 // T3
}

Monday, August 27, 12

Bill Gates Net Worth

56inetWorth
iA()

T1

int iB(int iworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(inetWorth);
 // T3
}

Monday, August 27, 12

Bill Gates Net Worth

56inetWorth
iA()

T2

iworth
iB() 57

int iB(int iworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(inetWorth);
 // T3
}

Monday, August 27, 12

Bill Gates Net Worth

56inetWorth
iA()

T3

int iB(int iworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(inetWorth);
 // T3
}

Monday, August 27, 12

What we want ...

56inetWorth
iA()

T1

Monday, August 27, 12

What we want ...

57inetWorth
iA()

T2

iworth
iB() *

Instead of a copy, iB() receives a pointer to inetWorth. iB()
dereferences the pointer to access and change inetWorth.

Monday, August 27, 12

What we want ...

57inetWorth
iA()

T3

Monday, August 27, 12

What do we change to do that?

57inetWorth
iA()

T3

int iB(int iworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(inetWorth);
 // T3
}

Monday, August 27, 12

What do we change to do that?

57inetWorth
iA()

T3

int iB(int * piworth) {
 iworth = iworth + 1;
 // T2

}

int iA() {
 int inetWorth;
 inetWorth = 56; //T1
 iB(&inetWorth);
 // T3
}

Monday, August 27, 12

What do we change to do that?

57netWorth
A()

T3

int B(int * worth) {
 worth = worth + 1;
 // T2

}

int A() {
 int netWorth;
 netWorth = 56; //T1
 B(&netWorth);
 // T3
}

Monday, August 27, 12

What do we change to do that?

57netWorth
A()

T3

int B(int * worth) {
 worth = worth + 1;
 // T2

}

int A() {
 int netWorth;
 netWorth = 56; //T1
 B(&netWorth);
 // T3
}

Monday, August 27, 12

Using pointers avoids making
copies

•efficient. (e.g. arrays)

•unclear which copy is correct

A person with one watch always knows
what time it is. A person with two is

never sure.

Monday, August 27, 12

Swap - you try

int main() {
 int ix = 6;
 int iy = 15;
 swap(&ix, &iy);
}

Monday, August 27, 12

Swap - you try

void swap(int * pia, int * pib) {
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

int main() {
 int ix = 6;
 int iy = 15;
 swap(&ix, &iy);
}

Monday, August 27, 12

<Heap Memory>

aka dynamic memory

Monday, August 27, 12

Advantages

•lifetime: can build sth. in
function and return it.

•size: can control memory
allocation precisely.(e.g.,
estimating array sizes)

Monday, August 27, 12

Disadvantages

•more work

•more bugs

Monday, August 27, 12

Heap -- allocation

Local

(gif3)

(gif2)

(gif1)

free

Heap

Monday, August 27, 12

Heap -- deallocation

Local

(gif3)

free

(gif1)

free

Heap

Monday, August 27, 12

C Specifics

•void * malloc(unsigned long size)
returns a pointer to a new heap
block of the requested size.
it returns NULL if it cannot
allocate due to heap being full.

Monday, August 27, 12

C Specifics

•void free(void* heapBlockPointer)
takes a pointer to a heap block
and returns the block to the free
pool for later reuse

•Malloc and free should be
balanced.

Monday, August 27, 12

Simple example

int iHeap1() {
 int *piFoo;

}

Local

xxxxpiFoo

Heap

Monday, August 27, 12

Simple example

int iHeap1() {
 int *piFoo;
 piFoo = malloc(sizeof(int);

}

Local

xxxxpiFoo

Heap

Monday, August 27, 12

Simple example

int oHeap1() {
 int *piFoo;
 piFoo = malloc(sizeof(int);
 *piFoo = 42;

}

Local

xxxxpiFoo

Heap

42

Monday, August 27, 12

Compare

int * iCreateInt(int ix) {
 int *piFoo;
 piFoo = malloc(sizeof(int);
 *piFoo = ix;
 return piFoo;

}

int * iCreateInt2(int ix) {
 int itmp;
 itmp = ix;
 return &itmp;

}

Monday, August 27, 12

Memory leaks

•memory on the heap is allocated
but never deallocated.

•For small, short-lived programs
this is not a problem.

•They are a problem for programs
that run an indeterminate amount
of time. (for ex., OSs)

Monday, August 27, 12

Memory leaks

•Many commercial programs have
memory leaks.

•When they run for long enough they
fill up the heap and crash.

•Firefox 2,

Monday, August 27, 12

<one last thing>

Monday, August 27, 12

The magic wand
of pointer assignment

•The assignment operator (=)
between 2 pointers makes them
point to the same pointee.

42inum

piFoo

piBar

piBar = piFoo

Monday, August 27, 12

One last thing ...

int main()
{
 struct node * pnodeList;
 struct node * pnodeHead = NULL;
 pnodeList = pnodeMakeShortList();
 printList(pnodeList);
 pnodeAddFront(pnodeList, 77);
 printList(pnodeList);

Monday, August 27, 12

One last thing ...

void pnodeAddFront(struct node * pnodeAlist, int ix)
{
 struct node * pnodetmp;
 pnodetmp = (struct node *) malloc(sizeof(struct node));
 pnodetmp->next = pnodeAlist;
 pnodetmp->data = ix;
 pnodeAlist = tmp;
 printList(pnodeAlist);
}

int main()
{
 struct node * pnodeList;
 struct node * pnodeHead = NULL;
 pnodeList = pnodeMakeShortList();
 printList(pnodeList);
 pnodeAddFront(pnodeList, 77);
 printList(pnodeList);

Macintosh-2:Desktop $./a.out
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
Data: 77 Next: 0x100120
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
WHAT IS YOUR PREDICTION?

Monday, August 27, 12

One last thing ...

void pnodeAddFront(struct node * pnodeAlist, int ix)
{
 struct node * pnodetmp;
 pnodetmp = (struct node *) malloc(sizeof(struct node));
 pnodetmp->next = pnodeAlist;
 pnodetmp->data = ix;
 pnodeAlist = tmp;
 printList(pnodeAlist);
}

int main()
{
 struct node * pnodeList;
 struct node * pnodeHead = NULL;
 pnodeList = pnodeMakeShortList();
 printList(pnodeList);
 pnodeAddFront(pnodeList, 77);
 printList(pnodeList);

Macintosh-2:Desktop $./a.out
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
Data: 77 Next: 0x100120
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0

Monday, August 27, 12

One last thing ...

void pnodeAddFront(struct node ** ppnodeAlist, int ix)
{
 struct node * pnodetmp;
 pnodetmp = (struct node *) malloc(sizeof(struct node));
 pnodetmp->next = pnodeAlist;
 pnodetmp->data = ix;
 pnodeAlist = tmp;
 printList(pnodeAlist);
}

int main()
{
 struct node * pnodeList;
 struct node * pnodeHead = NULL;
 pnodeList = pnodeMakeShortList();
 printList(pnodeList);
 pnodeAddFront(&pnodeList, 77);
 printList(pnodeList);

Macintosh-2:Desktop $./a.out
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
Data: 77 Next: 0x100120
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0
Data: 1 Next: 0x100130
Data: 2 Next: 0x100140
Data: 3 Next: 0x0

Monday, August 27, 12

