Project 3 Walkthroughn

Betore that...

x reminder that optional Project 2 is due Eriday 2 Nov.
x auto grading Project 1 prepared you for Project 2
® VOU need to develop: your own test cases

x it worked on my-machine”

Wednesday, September 19, 12

Project 3

WOork in:-teams:ot:2

YOu are responsible:

x form a team by finding someone you work well with.

® resolve any. problems that arise during the partnership.

Wednesday, September 19, 12

You must follow a pair
orogramming methodology

http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

You must follow a pair
orogramming methodology

x Sit side by side in front of the monitor sliding keyboara
and mouse back and:forth.

x \While one person types the other observes, detects
tactical coding errors, etc.

® o0les swapped frequently.

Wednesday, September 19, 12

http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

Palr programming
research shows

INcrease: software:guality-withoutimpacting time
to deliver

Difficulty

Project Timoderately: easy

Project Simoaderately:nard

Likely:to:-be theimost challenging: programming
you have ever-aone.

Wednesday, September 19, 12

Strategies to make it easier

Strategies to make it easier

The projects:mait:aif

Ictity Is:conceptualizl

the solution:- ©nce:-you:overcome that hurd

9

c,

you-wilkbe:strprased:at-now:relatively simple the
mplementation:1s:

Brute force

A bruteforce alknighter:(or:several-alt:nighters)
has a low:chance: o StUccess:

Wednesday, September 19, 12

User level thread library

using this library:

® Ccreate threads
® destroy them

x allow threads to control scheduling

Wednesday, September 19, 12

main(int argc, char ** argv)
{
// Some initialization
// Create threads
// wait for threads to finish
// exit

// "Main" procedure for thread i
root 1 (...)

{

// do some work

// yield

// repeat as necessary

// return (implicit thread destruction)

}

where “root 1" 1s a “root function” that the ith thread
calls to start executing.

Wednesday, September 19, 12

Pre-existing code
2,000 lines-ofcoge
git repository:(see project write-up)

raz@Bodhi:”/xufharskfriabULl~1f4B7:§§
raz@Bodhi : “/zacharski- labUL T-11487ad$
raz@Bodhi : "~ /zacharski- labUlL T-1f487ad$

raz@Bodhi : " /zacharski- labULT-1f487ad$

raz@Bodhi : " /zacharski-1ablUlL T-11487ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@odhi : " /zacharski- labULT-1f487ad$

raz@Bodhi : " /zacharski-1ablUlL T-1f487ad$

raz@Bodhi: " /zacharski-lablULT-1f48/7ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@Bodhi: " /zacharski-labULT-1f487ad$

raz@Bodhi : " /zacharski-1abULT-1f487ad$

raz@Bodhi : " /zacharski-labllL.T-1f487ad$ ls

alarmHe lper doTest2 interrupt.c showHandler .o
alarmHe lper .c doTest2.c interrupt.h signalme.c
basicThreadlests.c dolTest?.expected interrupt.o stackframe-cdecl .gif
basiclhreadlests.h dolest2.0 libULT .a ULT.c
basicThreadlests.o doTest.c parselcontext ULT.h
cfuncproto.h doTest .expected parselcontext.c ULT.o
checkHAl1 . auk doTest.o README

checkUcontext .awk GNUmakefile showHand ler

doTest grade .sh showHand ler .c
raz@Bodhi:"/zacharski-labULT-1f487ad$ ||

Wednesday, September 19, 12

Thread Context

Program:counter; registers;localvariables,
stack; ete.

Program Context

® Need to save and restore the context from the
processor when switching threads.

x you will use two existing: lilorary: calls:
= getcontext
x getcontext

x project writeup has link to man page

Wednesday, September 19, 12

setcontext(2) - Linux man page

Name

getcontext, setcontext - get or set the user context
Synopsis

#include <ucontext.h>

int getcontext(ucontext_t *ucp);
int setcontext(const ucontext_t *ucp);

Description

In a System V-like environment, one has the two types mcontext t and ucontext t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

The mcontext_t type is machine-dependent and opaque. The ucontext t type is a structure that has at least the following fields:

typedef struct ucontext {
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext _t uc_mcontext;

} ucontext_t;

with sigset t and stack _t defined in <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
created using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

The function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12

setcontext(2) - Linux man page

ame
getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext t and ucontext t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext _t typa-is-mmaehire-dependent and opaque. The ucontext f type is a structure that has at least the following fields:

ypedef struct ucontext {
struct ucontext *uc_link;
sigset t uc_sigmask;
stack_t uc_stack;
mcontext t uc_mcontext;

ucontext_t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset _t and staCR t ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12

setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc_link; need to allocate a struct
sigset_t uc_sigmask;

e IR, | ucontext In memory and pass
. i pointer to a call to getcontext

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12

setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc_Link; Later you call setcontext with
sigset uc_sigmask;

stack £ uo_stack; f that pointer to copy that state to
)) the processor

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12

setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc Link; Look in sys/ucontext.h for more
slgset_ uc_sigmasx;

stack £ uc_stack; info (on Ubuntu /usr/include/sys/
.) ucontext.h)

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12

lask 1

finish:implementing:parsetcontext.c

Changing thread context

when creating a thread

x copy thread context from existing thread

® change 3 things

Wednesday, September 19, 12

Change 3 things

x change the program counter to point to the function
the thread should run

® gllocate and initialize a new: stack

x change the stack pointer to point to the top of the new
stack

Wednesday, September 19, 12

Higher
Mermory

Addresses

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3

Wednesday, September 19, 12

stack grows

Higher
Mermory
down

Addresses

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3

Wednesday, September 19, 12

Instruction pointer
(aka program
counter)

Stack

on: Intet:chips
X3S0

Wednesday, September 19, 12

* e
LN BN B

Higher
old %eEIF Mermony
ald %EBP Addresses

focn param &0

function
params

L B B B

- 12(%eho)
Tergaram# | S%hebo)
T e R
e -0t
e B(%hebp)
[Saved voeg_J+— [%E5P]

Higher
Mermory
Addresses

frame pointer

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3

Wednesday, September 19, 12

parameters
pushed from right
to left

Stack

on: Intet:chips
X3S0

Wednesday, September 19, 12

* e
LN BN B

Higher
old %eEIF Mermony
ald %EBP Addresses

focn param &0

function
params

L B B B

- 12(%eho)
Tergaram# | S%hebo)
T e R
e -0t
e B(%hebp)
[Saved voeg_J+— [%E5P]

You are implementing an AP

x [|d ULT Yield(lid tid): suspend caller-and run thread tid
x ULT_ANY
x ULT SELFE
x returns tid of thread executed or:
x ULT INVALID
= ULT _NONE (no threads available)

Wednesday, September 19, 12

You are implementing an API

x [d UL CreatethreadVolcEin)Vola)mvold arg):

create a new thread. It will either return the tid of the
new thread or

= ULT _NOMORE: liorary.can’t create more threads

x ULT NOMEMORY: couldn’t allocate memory for the
stack.

Wednesday, September 19, 12

You are implementing an API

x [d-ULEE:Destroy:areadthiostic)yidestroy the thread.

On programming and
l0gIstics

|_ogistics

x WOrks In teams of 2

x grading will-be done on ubuntu 12.04
x Bodhi Linux

x read and reread the project description

x start creating a road map of the C files.

Wednesday, September 19, 12

|_ogistics cont ©

x there are very few: lines of code to write.

® phacking doesn‘t work

Wednesday, September 19, 12

