Project 3 Walkthroughn




Betore that...

x reminder that optional Project 2 is due Eriday 2 Nov.
x auto grading Project 1 prepared you for Project 2
® VOU need to develop: your own test cases

x it worked on my-machine”
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Project 3

WOork in:-teams:ot:2




YOu are responsible:

x form a team by finding someone you work well with.

® resolve any. problems that arise during the partnership.
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You must follow a pair
orogramming methodology



http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

You must follow a pair
orogramming methodology

x Sit side by side in front of the monitor sliding keyboara
and mouse back and:forth.

x \While one person types the other observes, detects
tactical coding errors, etc.

® o0les swapped frequently.
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http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

Palr programming
research shows

INcrease: software:guality-withoutimpacting time
to deliver




Difficulty

Project Timoderately: easy

Project Simoaderately:nard




Likely:to:-be theimost challenging: programming
you have ever-aone.
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Strategies to make it easier




Strategies to make it easier

The projects:mait:aif

Ictity Is:conceptualizl

the solution:- ©nce:-you:overcome that hurd

9

c,

you-wilkbe:strprased:at-now:relatively simple the
mplementation:1s:




Brute force

A bruteforce alknighter:(or:several-alt:nighters)
has a low:chance: o StUccess:
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User level thread library




using this library:

® Ccreate threads
® destroy them

x allow threads to control scheduling
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main(int argc, char ** argv)
{
// Some initialization
// Create threads
// wait for threads to finish
// exit

// "Main" procedure for thread i
root 1 (...)

{

// do some work

// yield

// repeat as necessary

// return (implicit thread destruction)

}

where “root 1" 1s a “root function” that the ith thread
calls to start executing.
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Pre-existing code
2,000 lines-ofcoge
git repository:(see project write-up)




raz@Bodhi:”/xufharskfriabULl~1f4B7:§§
raz@Bodhi : “/zacharski- labUL T-11487ad$
raz@Bodhi : "~ /zacharski- labUlL T-1f487ad$

raz@Bodhi : " /zacharski- labULT-1f487ad$

raz@Bodhi : " /zacharski-1ablUlL T-11487ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@odhi : " /zacharski- labULT-1f487ad$

raz@Bodhi : " /zacharski-1ablUlL T-1f487ad$

raz@Bodhi: " /zacharski-lablULT-1f48/7ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@Bodhi : " /zacharski-labULT-1f487ad$

raz@Bodhi: " /zacharski-labULT-1f487ad$

raz@Bodhi : " /zacharski-1abULT-1f487ad$

raz@Bodhi : " /zacharski-labllL.T-1f487ad$ ls

alarmHe lper doTest2 interrupt.c showHandler .o
alarmHe lper .c doTest2.c interrupt.h signalme.c
basicThreadlests.c dolTest?.expected interrupt.o stackframe-cdecl .gif
basiclhreadlests.h dolest2.0 libULT .a ULT.c
basicThreadlests.o doTest.c parselcontext ULT.h
cfuncproto.h doTest .expected parselcontext.c ULT.o
checkHAl1 . auk doTest.o README

checkUcontext .awk  GNUmakefile showHand ler

doTest grade .sh showHand ler .c
raz@Bodhi:"/zacharski-labULT-1f487ad$ ||
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Thread Context

Program:counter; registers;localvariables,
stack; ete.




Program Context

® Need to save and restore the context from the
processor when switching threads.

x you will use two existing: lilorary: calls:
= getcontext
x getcontext

x project writeup has link to man page
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setcontext(2) - Linux man page

Name

getcontext, setcontext - get or set the user context
Synopsis

#include <ucontext.h>

int getcontext(ucontext_t *ucp);
int setcontext(const ucontext_t *ucp);

Description

In a System V-like environment, one has the two types mcontext t and ucontext t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

The mcontext_t type is machine-dependent and opaque. The ucontext t type is a structure that has at least the following fields:

typedef struct ucontext {
struct ucontext *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext _t uc_mcontext;

} ucontext_t;

with sigset t and stack _t defined in <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
created using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

The function getcontext() initializes the structure pointed at by ucp to the currently active context.
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setcontext(2) - Linux man page

ame
getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext t and ucontext t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext _t typa-is-mmaehire-dependent and opaque. The ucontext f type is a structure that has at least the following fields:

ypedef struct ucontext {
struct ucontext *uc_link;
sigset t uc_sigmask;
stack_t uc_stack;
mcontext t uc_mcontext;

ucontext_t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset _t and staCR t ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.

Wednesday, September 19, 12



setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc_link; need to allocate a struct
sigset_t uc_sigmask;

e IR, | ucontext In memory and pass
. i pointer to a call to getcontext

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.
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setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc_Link; Later you call setcontext with
sigset uc_sigmask;

stack £ uo_stack; f that pointer to copy that state to
) ) the processor

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.
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setcontext(2) - Linux man page

ame

getcontext, setcontext - get or set the user context
Synopsis
finclude <ucontext.h>

nt getcontext(ucontext_t *ucp);
nt setcontext(const ucontext_t *ucp);

Description

n a System V-like environment, one has the two types mcontext_t and ucontext _t defined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3)
and swapcontext(3) that allow user-level context switching between multiple threads of control within a process.

he mcontext t type dependent and opaque. The ucontext t type is a structure that has at least the following fields:

ypedef struct ucontext {

struct ucontext *uc Link; Look in sys/ucontext.h for more
slgset_ uc_sigmasx;

stack £ uc_stack; info (on Ubuntu /usr/include/sys/
. ) ucontext.h)

ucontext t;

- B0 In <signal.h>. Here uc_link points to the context that will be resumed when the current context terminates (in case the current context was
reated using makecontext(3)), uc_sigmask is the set of signals blocked in this context (see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)),
and uc_mcontext is the machine-specific representation of the saved context, that includes the calling thread's machine registers.

ith sigset t and staCR T ue

he function getcontext() initializes the structure pointed at by ucp to the currently active context.
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lask 1

finish:implementing:parsetcontext.c




Changing thread context




when creating a thread

x copy thread context from existing thread

® change 3 things
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Change 3 things

x change the program counter to point to the function
the thread should run

® gllocate and initialize a new: stack

x change the stack pointer to point to the top of the new
stack
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Higher
Mermory

Addresses

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3
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stack grows

Higher
Mermory
down

Addresses

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3
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Instruction pointer
(aka program
counter)

Stack

on: Intet:chips
X3S0
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* e
LN BN B

Higher
old %eEIF Mermony
ald %EBP Addresses

focn param &0

function
params
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- 12(%eho)
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T e R
e -0t
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Higher
Mermory
Addresses

frame pointer

function
params

Stack

on: Intet:chips
X3S0

[Swver ey |+ [Esr

¢ ¢
4 2
3 3
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parameters
pushed from right
to left

Stack

on: Intet:chips
X3S0
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* e
LN BN B

Higher
old %eEIF Mermony
ald %EBP Addresses

focn param &0

function
params

L B B B

- 12(%eho)
Tergaram# | S%hebo)
T e R
e -0t
e B(%hebp)
[Saved voeg_J+— [%E5P ]




You are implementing an AP

x [|d ULT Yield(lid tid): suspend caller-and run thread tid
x ULT_ANY
x ULT SELFE
x returns tid of thread executed or:
x ULT INVALID
= ULT _NONE (no threads available)
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You are implementing an API

x [ d UL CreatethreadVolcEin)Vola)mvold arg):

create a new thread. It will either return the tid of the
new thread or

= ULT _NOMORE: liorary.can’t create more threads

x ULT NOMEMORY: couldn’t allocate memory for the
stack.
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You are implementing an API

x [ d-ULEE:Destroy:areadthiostic)yidestroy the thread.




On programming and
l0gIstics




|_ogistics

x WOrks In teams of 2

x grading will-be done on ubuntu 12.04
x Bodhi Linux

x read and reread the project description

x start creating a road map of the C files.
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|_ogistics cont ©

x there are very few: lines of code to write.

® phacking doesn‘t work
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