
Project 3 Walkthrough

Wednesday, September 19, 12

Before that...

reminder that optional Project 2 is due Friday 2 Nov.

auto grading Project 1 prepared you for Project 2

you need to develop your own test cases

“it worked on my machine”

Wednesday, September 19, 12

Project 3
work in teams of 2

Wednesday, September 19, 12

You are responsible:

form a team by finding someone you work well with.

resolve any problems that arise during the partnership.

Wednesday, September 19, 12

You must follow a pair
programming methodology

http://www.extremeprogramming.org/rules/pair.html

Wednesday, September 19, 12

http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

You must follow a pair
programming methodology

sit side by side in front of the monitor sliding keyboard
and mouse back and forth.

while one person types the other observes, detects
tactical coding errors, etc.

roles swapped frequently.

http://www.extremeprogramming.org/rules/pair.html

Wednesday, September 19, 12

http://www.extremeprogramming.org/rules/pair.html
http://www.extremeprogramming.org/rules/pair.html

Pair programming
research shows
increase software quality without impacting time
to deliver

Wednesday, September 19, 12

Difficulty
Project 1: moderately easy
Project 3: moderately hard

Wednesday, September 19, 12

Likely to be the most challenging programming
you have ever done.

Wednesday, September 19, 12

Strategies to make it easier

Wednesday, September 19, 12

Strategies to make it easier
The project’s main difficulty is conceptualizing
the solution. Once you overcome that hurdle,
you will be surprised at how relatively simple the
implementation is.

Wednesday, September 19, 12

Brute force
A brute force all nighter (or several all nighters)
has a low chance of success.

Wednesday, September 19, 12

Wednesday, September 19, 12

User level thread library

Wednesday, September 19, 12

using this library:

create threads

destroy them

allow threads to control scheduling

Wednesday, September 19, 12

main(int argc, char ** argv)
{
 // Some initialization
 // Create threads
 // wait for threads to finish
 // exit
}

// "Main" procedure for thread i
root_i (...)
{
 // do some work
 // yield
 // repeat as necessary
 // return (implicit thread destruction)
}
where “root_i” is a “root function” that the ith thread
calls to start executing.

Wednesday, September 19, 12

Pre-existing code
2,000 lines of code
git repository (see project write-up)

Wednesday, September 19, 12

Wednesday, September 19, 12

Thread Context
Program counter, registers, local variables,
stack, etc.

Wednesday, September 19, 12

Program Context

need to save and restore the context from the
processor when switching threads.

you will use two existing library calls:

getcontext

setcontext

project writeup has link to man page

Wednesday, September 19, 12

Wednesday, September 19, 12

Wednesday, September 19, 12

need to allocate a struct
ucontext in memory and pass
pointer to a call to getcontext

Wednesday, September 19, 12

Later you call setcontext with
that pointer to copy that state to

the processor

Wednesday, September 19, 12

Look in sys/ucontext.h for more
info (on Ubuntu /usr/include/sys/

ucontext.h)

Wednesday, September 19, 12

Task 1
finish implementing parseUcontext.c

Wednesday, September 19, 12

Changing thread context

Wednesday, September 19, 12

when creating a thread

copy thread context from existing thread

change 3 things

Wednesday, September 19, 12

Change 3 things

change the program counter to point to the function
the thread should run

allocate and initialize a new stack

change the stack pointer to point to the top of the new
stack

Wednesday, September 19, 12

Stack
on Intel chips
x86

Wednesday, September 19, 12

Stack
on Intel chips
x86

stack grows
down

Wednesday, September 19, 12

Stack
on Intel chips
x86

Instruction pointer
(aka program

counter)

Wednesday, September 19, 12

Stack
on Intel chips
x86

frame pointer

Wednesday, September 19, 12

Stack
on Intel chips
x86

parameters
pushed from right

to left

Wednesday, September 19, 12

You are implementing an API

Tid ULT_Yield(Tid tid): suspend caller and run thread tid

ULT_ANY

ULT_SELF

returns tid of thread executed or:

ULT_INVALID

ULT_NONE (no threads available)

Wednesday, September 19, 12

You are implementing an API

Tid ULT_CreateThread(void (*fn)(void *), void *arg):
create a new thread. It will either return the tid of the
new thread or

ULT_NOMORE: library can’t create more threads

ULT_NOMEMORY: couldn’t allocate memory for the
stack.

Wednesday, September 19, 12

You are implementing an API

Tid ULT_DestroyThread(Tid tid): destroy the thread.

Wednesday, September 19, 12

On programming and
logistics

Wednesday, September 19, 12

Logistics

works in teams of 2

grading will be done on ubuntu 12.04

Bodhi Linux

read and reread the project description

start creating a road map of the C files.

Wednesday, September 19, 12

Logistics cont’d

there are very few lines of code to write.

hacking doesn’t work

Wednesday, September 19, 12

