
C H A P T E R 9
Virtual Memory

9.1 Physical and Virtual Addressing 777

9.2 Address Spaces 778

9.3 VM as a Tool for Caching 779

9.4 VM as a Tool for Memory Management 785

9.5 VM as a Tool for Memory Protection 786

9.6 Address Translation 787

9.7 Case Study: The Intel Core i7/Linux Memory System 799

9.8 Memory Mapping 807

9.9 Dynamic Memory Allocation 812

9.10 Garbage Collection 838

9.11 Common Memory-Related Bugs in C Programs 843

9.12 Summary 848

Bibliographic Notes 848

Homework Problems 849

Solutions to Practice Problems 853

775

776 Chapter 9 Virtual Memory

Processes in a system share the CPU and main memory with other processes.
However, sharing the main memory poses some special challenges. As demand
on the CPU increases, processes slow down in some reasonably smooth way. But
if too many processes need too much memory, then some of them will simply
not be able to run. When a program is out of space, it is out of luck. Memory is
also vulnerable to corruption. If some process inadvertently writes to the memory
used by another process, that process might fail in some bewildering fashion totally
unrelated to the program logic.

In order to manage memory more efficiently and with fewer errors, modern
systems provide an abstraction of main memory known as virtual memory (VM).
Virtual memory is an elegant interaction of hardware exceptions, hardware ad-
dress translation, main memory, disk files, and kernel software that provides each
process with a large, uniform, and private address space. With one clean mech-
anism, virtual memory provides three important capabilities. (1) It uses main
memory efficiently by treating it as a cache for an address space stored on disk,
keeping only the active areas in main memory, and transferring data back and
forth between disk and memory as needed. (2) It simplifies memory management
by providing each process with a uniform address space. (3) It protects the address
space of each process from corruption by other processes.

Virtual memory is one of the great ideas in computer systems. A major reason
for its success is that it works silently and automatically, without any intervention
from the application programmer. Since virtual memory works so well behind the
scenes, why would a programmer need to understand it? There are several reasons.

. Virtual memory is central. Virtual memory pervades all levels of computer
systems, playing key roles in the design of hardware exceptions, assemblers,
linkers, loaders, shared objects, files, and processes. Understanding virtual
memory will help you better understand how systems work in general.

. Virtual memory is powerful. Virtual memory gives applications powerful ca-
pabilities to create and destroy chunks of memory, map chunks of memory to
portions of disk files, and share memory with other processes. For example,
did you know that you can read or modify the contents of a disk file by reading
and writing memory locations? Or that you can load the contents of a file into
memory without doing any explicit copying? Understanding virtual memory
will help you harness its powerful capabilities in your applications.

. Virtual memory is dangerous. Applications interact with virtual memory ev-
ery time they reference a variable, dereference a pointer, or make a call to a
dynamic allocation package such as malloc. If virtual memory is used improp-
erly, applications can suffer from perplexing and insidious memory-related
bugs. For example, a program with a bad pointer can crash immediately with
a “Segmentation fault” or a “Protection fault,” run silently for hours before
crashing, or scariest of all, run to completion with incorrect results. Under-
standing virtual memory, and the allocation packages such as malloc that
manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. The first half of the
chapter describes how virtual memory works. The second half describes how

Section 9.1 Physical and Virtual Addressing 777

virtual memory is used and managed by applications. There is no avoiding the
fact that VM is complicated, and the discussion reflects this in places. The good
news is that if you work through the details, you will be able to simulate the virtual
memory mechanism of a small system by hand, and the virtual memory idea will
be forever demystified.

The second half builds on this understanding, showing you how to use and
manage virtual memory in your programs. You will learn how to manage virtual
memory via explicit memory mapping and calls to dynamic storage allocators such
as the malloc package. You will also learn about a host of common memory-
related errors in C programs and how to avoid them.

9.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an array of M contiguous
byte-sized cells. Each byte has a unique physical address (PA). The first byte has
an address of 0, the next byte an address of 1, the next byte an address of 2,
and so on. Given this simple organization, the most natural way for a CPU to
access memory would be to use physical addresses. We call this approach physical
addressing. Figure 9.1 shows an example of physical addressing in the context of
a load instruction that reads the word starting at physical address 4.

When the CPU executes the load instruction, it generates an effective physical
address and passes it to main memory over the memory bus. The main memory
fetches the 4-byte word starting at physical address 4 and returns it to the CPU,
which stores it in a register.

Early PCs used physical addressing, and systems such as digital signal pro-
cessors, embedded microcontrollers, and Cray supercomputers continue to do so.
However, modern processors use a form of addressing known as virtual address-
ing, as shown in Figure 9.2.

With virtual addressing, the CPU accesses main memory by generating a vir-
tual address (VA), which is converted to the appropriate physical address before
being sent to the memory. The task of converting a virtual address to a physical
one is known as address translation. Like exception handling, address translation

Figure 9.1
A system that uses
physical addressing.

. . .

Main memory
0:
1:
2:
3:
4:
5:
6:
7:
8:

Physical
address

(PA)
CPU

4

M!1:

Data word

778 Chapter 9 Virtual Memory

Figure 9.2
A system that uses virtual
addressing.

Main memory
0:
1:
2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Virtual
address

(VA)

Address
translation

CPU

CPU chip

MMU
4100 4

M!1:

Data word

. . .

requires close cooperation between the CPU hardware and the operating sys-
tem. Dedicated hardware on the CPU chip called the memory management unit
(MMU) translates virtual addresses on the fly, using a look-up table stored in main
memory whose contents are managed by the operating system.

9.2 Address Spaces

An address space is an ordered set of nonnegative integer addresses

{0, 1, 2, . . .}

If the integers in the address space are consecutive, then we say that it is a linear
address space. To simplify our discussion, we will always assume linear address
spaces. In a system with virtual memory, the CPU generates virtual addresses from
an address space of N = 2n addresses called the virtual address space:

{0, 1, 2, . . . , N − 1}

The size of an address space is characterized by the number of bits that are needed
to represent the largest address. For example, a virtual address space with N = 2n

addresses is called an n-bit address space. Modern systems typically support either
32-bit or 64-bit virtual address spaces.

A system also has a physical address space that corresponds to the M bytes of
physical memory in the system:

{0, 1, 2, . . . , M − 1}

M is not required to be a power of two, but to simplify the discussion we will
assume that M = 2m.

The concept of an address space is important because it makes a clean dis-
tinction between data objects (bytes) and their attributes (addresses). Once we
recognize this distinction, then we can generalize and allow each data object to
have multiple independent addresses, each chosen from a different address space.

Section 9.3 VM as a Tool for Caching 779

Figure 9.3
How a VM system uses
main memory as a cache.

VP 0
VP 1 PP 0

PP 1

PP 2m!p ! 1
VP 2n!p ! 1

Unallocated
Virtual memory Physical memory

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Cached
Uncached

Unallocated
Cached

Uncached

Empty

Empty

Empty

N ! 1
M ! 1

0

0

Cached
Uncached

This is the basic idea of virtual memory. Each byte of main memory has a virtual
address chosen from the virtual address space, and a physical address chosen from
the physical address space.

Practice Problem 9.1
Complete the following table, filling in the missing entries and replacing each
question mark with the appropriate integer. Use the following units: K = 210

(Kilo), M = 220 (Mega), G = 230 (Giga), T = 240 (Tera), P = 250 (Peta), or E = 260

(Exa).

No. virtual address bits (n) No. virtual addresses (N) Largest possible virtual address

8
2? = 64K

232 − 1 =?G − 1
2? = 256T

64

9.3 VM as a Tool for Caching

Conceptually, a virtual memory is organized as an array of N contiguous byte-sized
cells stored on disk. Each byte has a unique virtual address that serves as an index
into the array. The contents of the array on disk are cached in main memory. As
with any other cache in the memory hierarchy, the data on disk (the lower level)
is partitioned into blocks that serve as the transfer units between the disk and the
main memory (the upper level). VM systems handle this by partitioning the virtual
memory into fixed-sized blocks called virtual pages (VPs). Each virtual page is
P = 2p bytes in size. Similarly, physical memory is partitioned into physical pages
(PPs), also P bytes in size. (Physical pages are also referred to as page frames.)

At any point in time, the set of virtual pages is partitioned into three disjoint
subsets:

. Unallocated: Pages that have not yet been allocated (or created) by the VM
system. Unallocated blocks do not have any data associated with them, and
thus do not occupy any space on disk.

780 Chapter 9 Virtual Memory

. Cached: Allocated pages that are currently cached in physical memory.

. Uncached: Allocated pages that are not cached in physical memory.

The example in Figure 9.3 shows a small virtual memory with eight virtual
pages. Virtual pages 0 and 3 have not been allocated yet, and thus do not yet exist
on disk. Virtual pages 1, 4, and 6 are cached in physical memory. Pages 2, 5, and 7
are allocated, but are not currently cached in main memory.

9.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchy straight, we will use
the term SRAM cache to denote the L1, L2, and L3 cache memories between the
CPU and main memory, and the term DRAM cache to denote the VM system’s
cache that caches virtual pages in main memory.

The position of the DRAM cache in the memory hierarchy has a big impact
on the way that it is organized. Recall that a DRAM is at least 10 times slower
than an SRAM and that disk is about 100,000 times slower than a DRAM. Thus,
misses in DRAM caches are very expensive compared to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAM cache misses are
usually served from DRAM-based main memory. Further, the cost of reading the
first byte from a disk sector is about 100,000 times slower than reading successive
bytes in the sector. The bottom line is that the organization of the DRAM cache
is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of accessing the first byte,
virtual pages tend to be large, typically 4 KB to 2 MB. Due to the large miss penalty,
DRAM caches are fully associative, that is, any virtual page can be placed in any
physical page. The replacement policy on misses also assumes greater importance,
because the penalty associated with replacing the wrong virtual page is so high.
Thus, operating systems use much more sophisticated replacement algorithms for
DRAM caches than the hardware does for SRAM caches. (These replacement
algorithms are beyond our scope here.) Finally, because of the large access time
of disk, DRAM caches always use write-back instead of write-through.

9.3.2 Page Tables

As with any cache, the VM system must have some way to determine if a virtual
page is cached somewhere in DRAM. If so, the system must determine which
physical page it is cached in. If there is a miss, the system must determine where
the virtual page is stored on disk, select a victim page in physical memory, and
copy the virtual page from disk to DRAM, replacing the victim page.

These capabilities are provided by a combination of operating system soft-
ware, address translation hardware in the MMU (memory management unit), and
a data structure stored in physical memory known as a page table that maps vir-
tual pages to physical pages. The address translation hardware reads the page table
each time it converts a virtual address to a physical address. The operating system

Section 9.3 VM as a Tool for Caching 781

Figure 9.4
Page table.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

is responsible for maintaining the contents of the page table and transferring pages
back and forth between disk and DRAM.

Figure 9.4 shows the basic organization of a page table. A page table is an array
of page table entries (PTEs). Each page in the virtual address space has a PTE at
a fixed offset in the page table. For our purposes, we will assume that each PTE
consists of a valid bit and an n-bit address field. The valid bit indicates whether
the virtual page is currently cached in DRAM. If the valid bit is set, the address
field indicates the start of the corresponding physical page in DRAM where the
virtual page is cached. If the valid bit is not set, then a null address indicates that
the virtual page has not yet been allocated. Otherwise, the address points to the
start of the virtual page on disk.

The example in Figure 9.4 shows a page table for a system with eight virtual
pages and four physical pages. Four virtual pages (VP 1, VP 2, VP 4, and VP 7)
are currently cached in DRAM. Two pages (VP 0 and VP 5) have not yet been
allocated, and the rest (VP 3 and VP 6) have been allocated, but are not currently
cached. An important point to notice about Figure 9.4 is that because the DRAM
cache is fully associative, any physical page can contain any virtual page.

Practice Problem 9.2
Determine the number of page table entries (PTEs) that are needed for the
following combinations of virtual address size (n) and page size (P):

n P = 2p No. PTEs

16 4K
16 8K
32 4K
32 8K

782 Chapter 9 Virtual Memory

Figure 9.5
VM page hit. The reference
to a word in VP 2 is a hit.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)Virtual address

Valid

9.3.3 Page Hits

Consider what happens when the CPU reads a word of virtual memory contained
in VP 2, which is cached in DRAM (Figure 9.5). Using a technique we will describe
in detail in Section 9.6, the address translation hardware uses the virtual address
as an index to locate PTE 2 and read it from memory. Since the valid bit is set, the
address translation hardware knows that VP 2 is cached in memory. So it uses the
physical memory address in the PTE (which points to the start of the cached page
in PP 1) to construct the physical address of the word.

9.3.4 Page Faults

In virtual memory parlance, a DRAM cache miss is known as a page fault. Fig-
ure 9.6 shows the state of our example page table before the fault. The CPU has
referenced a word in VP 3, which is not cached in DRAM. The address transla-
tion hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is not
cached, and triggers a page fault exception.

The page fault exception invokes a page fault exception handler in the kernel,
which selects a victim page, in this case VP 4 stored in PP 3. If VP 4 has been
modified, then the kernel copies it back to disk. In either case, the kernel modifies
the page table entry for VP 4 to reflect the fact that VP 4 is no longer cached in
main memory.

Next, the kernel copies VP 3 from disk to PP 3 in memory, updates PTE 3,
and then returns. When the handler returns, it restarts the faulting instruction,
which resends the faulting virtual address to the address translation hardware.
But now, VP 3 is cached in main memory, and the page hit is handled normally by
the address translation hardware. Figure 9.7 shows the state of our example page
table after the page fault.

Virtual memory was invented in the early 1960s, long before the widening
CPU-memory gap spawned SRAM caches. As a result, virtual memory systems

Section 9.3 VM as a Tool for Caching 783

Figure 9.6
VM page fault (before).
The reference to a word in
VP 3 is a miss and triggers
a page fault.

PTE 0

PP 0

PP 3
1
1
0
1
0
0
1

0

PTE 7

null

VP 1

VP 4
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)Virtual address

Valid

Figure 9.7
VM page fault (after). The
page fault handler selects
VP 4 as the victim and
replaces it with a copy of
VP 3 from disk. After the
page fault handler restarts
the faulting instruction, it
will read the word from
memory normally, without
generating an exception.

PTE 0

PP 0

PP 3
1
1
1
0
0
0
1

0

PTE 7

null

VP 1

VP 3
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 6

VP 7

null

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

Virtual address

use a different terminology from SRAM caches, even though many of the ideas
are similar. In virtual memory parlance, blocks are known as pages. The activity
of transferring a page between disk and memory is known as swapping or paging.
Pages are swapped in (paged in) from disk to DRAM, and swapped out (paged
out) from DRAM to disk. The strategy of waiting until the last moment to swap in
a page, when a miss occurs, is known as demand paging. Other approaches, such
as trying to predict misses and swap pages in before they are actually referenced,
are possible. However, all modern systems use demand paging.

9.3.5 Allocating Pages

Figure 9.8 shows the effect on our example page table when the operating system
allocates a new page of virtual memory, for example, as a result of calling malloc.

784 Chapter 9 Virtual Memory

Figure 9.8
Allocating a new virtual
page. The kernel allocates
VP 5 on disk and points
PTE 5 to this new location.

PTE 0

PP 0

PP 3
1
1
1
0
0
0
1

0

PTE 7

null

VP 1

VP 3
VP 7
VP 2
VP 1

VP 2

VP 3

VP 4

VP 5

VP 6

VP 7

Physical page
number or

disk address

Memory resident
page table
(DRAM)

Virtual memory
(disk)

Physical memory
(DRAM)

Valid

In the example, VP 5 is allocated by creating room on disk and updating PTE 5
to point to the newly created page on disk.

9.3.6 Locality to the Rescue Again

When many of us learn about the idea of virtual memory, our first impression is
often that it must be terribly inefficient. Given the large miss penalties, we worry
that paging will destroy program performance. In practice, virtual memory works
well, mainly because of our old friend locality.

Although the total number of distinct pages that programs reference during an
entire run might exceed the total size of physical memory, the principle of locality
promises that at any point in time they will tend to work on a smaller set of active
pages known as the working set or resident set. After an initial overhead where
the working set is paged into memory, subsequent references to the working set
result in hits, with no additional disk traffic.

As long as our programs have good temporal locality, virtual memory systems
work quite well. But of course, not all programs exhibit good temporal locality. If
the working set size exceeds the size of physical memory, then the program can
produce an unfortunate situation known as thrashing, where pages are swapped in
and out continuously. Although virtual memory is usually efficient, if a program’s
performance slows to a crawl, the wise programmer will consider the possibility
that it is thrashing.

Aside Counting page faults

You can monitor the number of page faults (and lots of other information) with the Unix getrusage
function.

Section 9.4 VM as a Tool for Memory Management 785

9.4 VM as a Tool for Memory Management

In the last section, we saw how virtual memory provides a mechanism for using the
DRAM to cache pages from a typically larger virtual address space. Interestingly,
some early systems such as the DEC PDP-11/70 supported a virtual address space
that was smaller than the available physical memory. Yet virtual memory was
still a useful mechanism because it greatly simplified memory management and
provided a natural way to protect memory.

Thus far, we have assumed a single page table that maps a single virtual
address space to the physical address space. In fact, operating systems provide
a separate page table, and thus a separate virtual address space, for each process.
Figure 9.9 shows the basic idea. In the example, the page table for process i maps
VP 1 to PP 2 and VP 2 to PP 7. Similarly, the page table for process j maps VP 1
to PP 7 and VP 2 to PP 10. Notice that multiple virtual pages can be mapped to
the same shared physical page.

The combination of demand paging and separate virtual address spaces has
a profound impact on the way that memory is used and managed in a system. In
particular, VM simplifies linking and loading, the sharing of code and data, and
allocating memory to applications.

. Simplifying linking. A separate address space allows each process to use the
same basic format for its memory image, regardless of where the code and
data actually reside in physical memory. For example, as we saw in Figure 8.13,
every process on a given Linux system has a similar memory format. The text
section always starts at virtual address 0x08048000 (for 32-bit address spaces),
or at address 0x400000 (for 64-bit address spaces). The data and bss sections
follow immediately after the text section. The stack occupies the highest
portion of the process address space and grows downward. Such uniformity
greatly simplifies the design and implementation of linkers, allowing them to
produce fully linked executables that are independent of the ultimate location
of the code and data in physical memory.

. Simplifying loading. Virtual memory also makes it easy to load executable
and shared object files into memory. Recall from Chapter 7 that the .text

Figure 9.9
How VM provides
processes with separate
address spaces. The
operating system maintains
a separate page table for
each process in the system.

Virtual address spaces
Physical memory

Shared page

Address translation
Process i :

Process j :

0

N!1

0

VP 1
VP 2

VP 1
VP 2

N!1

0

M!1

786 Chapter 9 Virtual Memory

and .data sections in ELF executables are contiguous. To load these sections
into a newly created process, the Linux loader allocates a contiguous chunk
of virtual pages starting at address 0x08048000 (32-bit address spaces) or
0x400000 (64-bit address spaces), marks them as invalid (i.e., not cached),
and points their page table entries to the appropriate locations in the object
file. The interesting point is that the loader never actually copies any data from
disk into memory. The data is paged in automatically and on demand by the
virtual memory system the first time each page is referenced, either by the
CPU when it fetches an instruction, or by an executing instruction when it
references a memory location.

This notion of mapping a set of contiguous virtual pages to an arbitrary
location in an arbitrary file is known as memory mapping. Unix provides
a system call called mmap that allows application programs to do their own
memory mapping. We will describe application-level memory mapping in
more detail in Section 9.8.

. Simplifying sharing. Separate address spaces provide the operating system
with a consistent mechanism for managing sharing between user processes
and the operating system itself. In general, each process has its own private
code, data, heap, and stack areas that are not shared with any other process. In
this case, the operating system creates page tables that map the corresponding
virtual pages to disjoint physical pages.

However, in some instances it is desirable for processes to share code
and data. For example, every process must call the same operating system
kernel code, and every C program makes calls to routines in the standard C
library such as printf. Rather than including separate copies of the kernel
and standard C library in each process, the operating system can arrange
for multiple processes to share a single copy of this code by mapping the
appropriate virtual pages in different processes to the same physical pages,
as we saw in Figure 9.9.

. Simplifying memory allocation.Virtual memory provides a simple mechanism
for allocating additional memory to user processes. When a program running
in a user process requests additional heap space (e.g., as a result of calling
malloc), the operating system allocates an appropriate number, say, k, of
contiguous virtual memory pages, and maps them to k arbitrary physical pages
located anywhere in physical memory. Because of the way page tables work,
there is no need for the operating system to locate k contiguous pages of
physical memory. The pages can be scattered randomly in physical memory.

9.5 VM as a Tool for Memory Protection

Any modern computer system must provide the means for the operating system
to control access to the memory system. A user process should not be allowed
to modify its read-only text section. Nor should it be allowed to read or modify
any of the code and data structures in the kernel. It should not be allowed to read
or write the private memory of other processes, and it should not be allowed to

Section 9.6 Address Translation 787

Physical memory

PP 0

PP 2

PP 4

PP 6

PP 9

PP 11

Process i:

Process j:

Page tables with permission bits

SUP READ WRITE Address

VP 0:
VP 1:
VP 2:

No

No
Yes

Yes

Yes
Yes

No

Yes
Yes

PP 6

PP 4
PP 2

SUP READ WRITE Address

VP 0:
VP 1:
VP 2:

No
Yes

No

Yes
Yes

Yes

No
Yes

Yes

PP 9
PP 6

PP 11

. . .
. . .

. . .

Figure 9.10 Using VM to provide page-level memory protection.

modify any virtual pages that are shared with other processes, unless all parties
explicitly allow it (via calls to explicit interprocess communication system calls).

As we have seen, providing separate virtual address spaces makes it easy to
isolate the private memories of different processes. But the address translation
mechanism can be extended in a natural way to provide even finer access control.
Since the address translation hardware reads a PTE each time the CPU generates
an address, it is straightforward to control access to the contents of a virtual page by
adding some additional permission bits to the PTE. Figure 9.10 shows the general
idea.

In this example, we have added three permission bits to each PTE. The SUP bit
indicates whether processes must be running in kernel (supervisor) mode to access
the page. Processes running in kernel mode can access any page, but processes
running in user mode are only allowed to access pages for which SUP is 0. The
READ and WRITE bits control read and write access to the page. For example,
if process i is running in user mode, then it has permission to read VP 0 and to
read or write VP 1. However, it is not allowed to access VP 2.

If an instruction violates these permissions, then the CPU triggers a general
protection fault that transfers control to an exception handler in the kernel. Unix
shells typically report this exception as a “segmentation fault.”

9.6 Address Translation

This section covers the basics of address translation. Our aim is to give you an
appreciation of the hardware’s role in supporting virtual memory, with enough
detail so that you can work through some concrete examples by hand. However,
keep in mind that we are omitting a number of details, especially related to timing,
that are important to hardware designers but are beyond our scope. For your

788 Chapter 9 Virtual Memory

Basic parameters

Symbol Description

N = 2n Number of addresses in virtual address space
M = 2m Number of addresses in physical address space
P = 2p Page size (bytes)

Components of a virtual address (VA)

Symbol Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index
TLBT TLB tag

Components of a physical address (PA)

Symbol Description

PPO Physical page offset (bytes)
PPN Physical page number
CO Byte offset within cache block
CI Cache index
CT Cache tag

Figure 9.11 Summary of address translation symbols.

reference, Figure 9.11 summarizes the symbols that we will be using throughout
this section.

Formally, address translation is a mapping between the elements of an N -
element virtual address space (VAS) and an M-element physical address space
(PAS),

MAP: VAS → PAS ∪ ∅

where

MAP(A) =
{

A′ if data at virtual addr A is present at physical addr A′ in PAS
∅ if data at virtual addr A is not present in physical memory

Figure 9.12 shows how the MMU uses the page table to perform this mapping.
A control register in the CPU, the page table base register (PTBR) points to the
current page table. The n-bit virtual address has two components: a p-bit virtual
page offset (VPO) and an (n − p)-bit virtual page number (VPN). The MMU uses
the VPN to select the appropriate PTE. For example, VPN 0 selects PTE 0, VPN 1
selects PTE 1, and so on. The corresponding physical address is the concatenation
of the physical page number (PPN) from the page table entry and the VPO from

Section 9.6 Address Translation 789

Page table
base register

(PTBR)

Physical address

Virtual address

Virtual page number (VPN) Virtual page offset (VPO)

Page
table

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

If valid ! 0
then page
not in memory
(page fault) Physical page number (PPN) Physical page offset (PPO)

n"1 p p"1

p p"1

0

m"1 0

Figure 9.12 Address translation with a page table.

the virtual address. Notice that since the physical and virtual pages are both P

bytes, the physical page offset (PPO) is identical to the VPO.
Figure 9.13(a) shows the steps that the CPU hardware performs when there

is a page hit.

. Step 1: The processor generates a virtual address and sends it to the MMU.

. Step 2: The MMU generates the PTE address and requests it from the
cache/main memory.

. Step 3: The cache/main memory returns the PTE to the MMU.

. Step 3: The MMU constructs the physical address and sends it to cache/main
memory.

. Step 4: The cache/main memory returns the requested data word to the pro-
cessor.

Unlike a page hit, which is handled entirely by hardware, handling a page
fault requires cooperation between hardware and the operating system kernel
(Figure 9.13(b)).

. Steps 1 to 3: The same as Steps 1 to 3 in Figure 9.13(a).

. Step 4: The valid bit in the PTE is zero, so the MMU triggers an exception,
which transfers control in the CPU to a page fault exception handler in the
operating system kernel.

. Step 5: The fault handler identifies a victim page in physical memory, and if
that page has been modified, pages it out to disk.

. Step 6: The fault handler pages in the new page and updates the PTE in
memory.

790 Chapter 9 Virtual Memory

5

CPU chip

Processor MMU
VA

Data

(a) Page hit

PA

PTE

PTEA

2

1
3

4

Cache/
memory

CPU chip

Processor MMU Disk
VA

PTE
Victim page

New page

PTEA

2

Exception

4

1

7

5

6

3 Cache/
memory

Page fault exception handler

(b) Page fault

Figure 9.13 Operational view of page hits and page faults. VA: virtual address. PTEA:
page table entry address. PTE: page table entry. PA: physical address.

. Step 7: The fault handler returns to the original process, causing the faulting
instruction to be restarted. The CPU resends the offending virtual address to
the MMU. Because the virtual page is now cached in physical memory, there
is a hit, and after the MMU performs the steps in Figure 9.13(b), the main
memory returns the requested word to the processor.

Practice Problem 9.3
Given a 32-bit virtual address space and a 24-bit physical address, determine the
number of bits in the VPN, VPO, PPN, and PPO for the following page sizes P :

P No. VPN bits No. VPO bits No. PPN bits No. PPO bits

1 KB
2 KB
4 KB
8 KB

Section 9.6 Address Translation 791

CPU chip

Processor MMU Memory
VA

Data L1
Cache

PA

PTEA

PTE

PTE

PTEA

PA

Data

PTEA
hit

PA
hit

PTEA
miss

PA
miss

Figure 9.14 Integrating VM with a physically addressed cache. VA: virtual address.
PTEA: page table entry address. PTE: page table entry. PA: physical address.

9.6.1 Integrating Caches and VM

In any system that uses both virtual memory and SRAM caches, there is the
issue of whether to use virtual or physical addresses to access the SRAM cache.
Although a detailed discussion of the trade-offs is beyond our scope here, most
systems opt for physical addressing. With physical addressing, it is straightforward
for multiple processes to have blocks in the cache at the same time and to share
blocks from the same virtual pages. Further, the cache does not have to deal
with protection issues because access rights are checked as part of the address
translation process.

Figure 9.14 shows how a physically addressed cache might be integrated with
virtual memory. The main idea is that the address translation occurs before the
cache lookup. Notice that page table entries can be cached, just like any other
data words.

9.6.2 Speeding up Address Translation with a TLB

As we have seen, every time the CPU generates a virtual address, the MMU must
refer to a PTE in order to translate the virtual address into a physical address. In
the worst case, this requires an additional fetch from memory, at a cost of tens
to hundreds of cycles. If the PTE happens to be cached in L1, then the cost goes
down to one or two cycles. However, many systems try to eliminate even this cost
by including a small cache of PTEs in the MMU called a translation lookaside
buffer (TLB).

A TLB is a small, virtually addressed cache where each line holds a block
consisting of a single PTE. A TLB usually has a high degree of associativity. As
shown in Figure 9.15, the index and tag fields that are used for set selection and line
matching are extracted from the virtual page number in the virtual address. If the
TLB has T = 2t sets, then the TLB index (TLBI) consists of the t least significant
bits of the VPN, and the TLB tag (TLBT) consists of the remaining bits in the
VPN.

792 Chapter 9 Virtual Memory

Figure 9.15
Components of a virtual
address that are used to
access the TLB.

n!1 p"t p p!1 0p"t!1

TLB tag (TLBT) TLB index (TLBI) VPO

VPN

Figure 9.16(a) shows the steps involved when there is a TLB hit (the usual
case). The key point here is that all of the address translation steps are performed
inside the on-chip MMU, and thus are fast.

. Step 1: The CPU generates a virtual address.

. Steps 2 and 3: The MMU fetches the appropriate PTE from the TLB.

. Step 4: The MMU translates the virtual address to a physical address and sends
it to the cache/main memory.

. Step 5: The cache/main memory returns the requested data word to the CPU.

When there is a TLB miss, then the MMU must fetch the PTE from the L1 cache,
as shown in Figure 9.16(b). The newly fetched PTE is stored in the TLB, possibly
overwriting an existing entry.

9.6.3 Multi-Level Page Tables

To this point we have assumed that the system uses a single page table to do address
translation. But if we had a 32-bit address space, 4 KB pages, and a 4-byte PTE,
then we would need a 4 MB page table resident in memory at all times, even if
the application referenced only a small chunk of the virtual address space. The
problem is compounded for systems with 64-bit address spaces.

The common approach for compacting the page table is to use a hierarchy
of page tables instead. The idea is easiest to understand with a concrete example.
Consider a 32-bit virtual address space partitioned into 4 KB pages, with page
table entries that are 4 bytes each. Suppose also that at this point in time the virtual
address space has the following form: The first 2K pages of memory are allocated
for code and data, the next 6K pages are unallocated, the next 1023 pages are also
unallocated, and the next page is allocated for the user stack. Figure 9.17 shows
how we might construct a two-level page table hierarchy for this virtual address
space.

Each PTE in the level-1 table is responsible for mapping a 4 MB chunk of the
virtual address space, where each chunk consists of 1024 contiguous pages. For
example, PTE 0 maps the first chunk, PTE 1 the next chunk, and so on. Given
that the address space is 4 GB, 1024 PTEs are sufficient to cover the entire space.

If every page in chunk i is unallocated, then level 1 PTE i is null. For example,
in Figure 9.17, chunks 2–7 are unallocated. However, if at least one page in chunk i

is allocated, then level 1 PTE i points to the base of a level 2 page table. For
example, in Figure 9.17, all or portions of chunks 0, 1, and 8 are allocated, so their
level 1 PTEs point to level 2 page tables.

Section 9.6 Address Translation 793

2

1

3

4

5

CPU chip

Processor Trans-
lation

TLB

Cache/
memoryVA

VPN PTE

Data

(a) TLB hit

PA

2

1

4

3

5

6

(b) TLB miss

CPU chip

Processor Trans-
lation

TLB

Cache/
memoryVA PA

VPN
PTE

Data

PTEA

Figure 9.16 Operational view of a TLB hit and miss.

Each PTE in a level 2 page table is responsible for mapping a 4 KB page of
virtual memory, just as before when we looked at single-level page tables. Notice
that with 4-byte PTEs, each level 1 and level 2 page table is 4K bytes, which
conveniently is the same size as a page.

This scheme reduces memory requirements in two ways. First, if a PTE in the
level 1 table is null, then the corresponding level 2 page table does not even have to
exist. This represents a significant potential savings, since most of the 4 GB virtual
address space for a typical program is unallocated. Second, only the level 1 table
needs to be in main memory at all times. The level 2 page tables can be created and

794 Chapter 9 Virtual Memory

. . .

VP 1023
VP 1024

VP 2047

Gap

PTE 0
PTE 1

PTE 2 (null)

VP 0

1023
unallocated

pages

PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)

PTE 0

PTE 1023

PTE 0

PTE 1023

1023 null
PTEs

PTE 7 (null)
PTE 8

(1K– 9)
null PTEs PTE 1023

. . .

. . .

VP 9215

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Virtual
memory

Level 2
page tables

Level 1
page table

0

. . .

. . .

Figure 9.17 A two-level page table hierarchy. Notice that addresses increase from top
to bottom.

paged in and out by the VM system as they are needed, which reduces pressure on
main memory. Only the most heavily used level 2 page tables need to be cached
in main memory.

Figure 9.18 summarizes address translation with a k-level page table hierarchy.
The virtual address is partitioned into k VPNs and a VPO. Each VPN i, 1 ≤ i ≤ k,
is an index into a page table at level i. Each PTE in a level-j table, 1 ≤ j ≤ k − 1,
points to the base of some page table at level j + 1. Each PTE in a level-k table
contains either the PPN of some physical page or the address of a disk block.
To construct the physical address, the MMU must access k PTEs before it can
determine the PPN. As with a single-level hierarchy, the PPO is identical to the
VPO.

Accessing k PTEs may seem expensive and impractical at first glance. How-
ever, the TLB comes to the rescue here by caching PTEs from the page tables at
the different levels. In practice, address translation with multi-level page tables is
not significantly slower than with single-level page tables.

9.6.4 Putting It Together: End-to-end Address Translation

In this section, we put it all together with a concrete example of end-to-end
address translation on a small system with a TLB and L1 d-cache. To keep things
manageable, we make the following assumptions:

. The memory is byte addressable.

. Memory accesses are to 1-byte words (not 4-byte words).

Section 9.6 Address Translation 795

Figure 9.18
Address translation with
a k-level page table.

PPN PPO

. . .

.

m!1

n!1 p!1 0

p!1 0

Virtual address

Physical address

VPN 1 VPN 2 VPN k VPO

Level 1
page table

Level 2
page table

Level k
page table

PPN

. Virtual addresses are 14 bits wide (n = 14).

. Physical addresses are 12 bits wide (m = 12).

. The page size is 64 bytes (P = 64).

. The TLB is four-way set associative with 16 total entries.

. The L1 d-cache is physically addressed and direct mapped, with a 4-byte line
size and 16 total sets.

Figure 9.19 shows the formats of the virtual and physical addresses. Since each
page is 26 = 64 bytes, the low-order 6 bits of the virtual and physical addresses serve
as the VPO and PPO respectively. The high-order 8 bits of the virtual address serve
as the VPN. The high-order 6 bits of the physical address serve as the PPN.

Figure 9.20 shows a snapshot of our little memory system, including the TLB
(Figure 9.20(a)), a portion of the page table (Figure 9.20(b)), and the L1 cache
(Figure 9.20(c)). Above the figures of the TLB and cache, we have also shown
how the bits of the virtual and physical addresses are partitioned by the hardware
as it accesses these devices.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN
(Virtual page number)

VPO
(Virtual page offset)

Virtual
address

11 10 9 8 7 6 5 4 3 2 1 0

PPN
(Physical page number)

PPO
(Physical page offset)

Physical
address

Figure 9.19 Addressing for small memory system. Assume 14-bit virtual addresses
(n = 14), 12-bit physical addresses (m = 12), and 64-byte pages (P = 64).

13

03

12 11 10 9 8 7 6 5 4 3 2 1 0

VPN

TLBT TLBI

(a) TLB: Four sets, 16 entries, four-way set associative

VPO

Virtual
address

03

02

07

!

2D

!

!

0

1

0

0

09

02

08

03

0D

!

!

0D

1

0

0

1

00

04

06

0A

!

!

!

34

0

0

0

1

07

0A

03

02

02

!

!

!

1

Tag

0

1

2

3

Set PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0

0

0

28

—

33

02

1

0

1

1

—

16

—

—

04

05

06

07

0

1

0

0

PPN

00

01

02

03

VPN Valid

13

17

09

!

1

1

1

0

!

2D

11

0D

0C

0D

0E

0F

0

1

1

1

PPN

08

09

0A

0B

VPN Valid

(b) Page table: Only the first 16 PTEs are shown

19

15

1B

36

1

0

1

0

32

0D

31

16

4

5

6

7

1

1

0

1

24 1

2D 0

2D 1

0B 0

12 0

16 1

13 1

14

8

9

A

B

C

D

E

F 0

Tag

0

1

2

3

Idx Valid

99

—

00

—

11

—

02

—

43

36

—

11

6D

72

—

C2

3A 00

— —

93 15

— —

— —

04 96

83 77

— —

Blk 0 Blk 1

23

—

04

—

11

—

08

—

8F

F0

—

DF

09

1D

—

03

51 89

— —

DA 3B

— —

— —

34 15

1B D3

— —

Blk 2 Blk 3

11 10 9 8 7 6 5 4 3 2 1 0

PPN

CT CI CO

PPO

Physical
address

(c) Cache: Sixteen sets, 4-byte blocks, direct mapped

Figure 9.20 TLB, page table, and cache for small memory system. All values in the
TLB, page table, and cache are in hexadecimal notation.

Section 9.6 Address Translation 797

. TLB: The TLB is virtually addressed using the bits of the VPN. Since the TLB
has four sets, the 2 low-order bits of the VPN serve as the set index (TLBI).
The remaining 6 high-order bits serve as the tag (TLBT) that distinguishes
the different VPNs that might map to the same TLB set.

. Page table. The page table is a single-level design with a total of 28 = 256 page
table entries (PTEs). However, we are only interested in the first sixteen of
these. For convenience, we have labeled each PTE with the VPN that indexes
it; but keep in mind that these VPNs are not part of the page table and not
stored in memory. Also, notice that the PPN of each invalid PTE is denoted
with a dash to reinforce the idea that whatever bit values might happen to be
stored there are not meaningful.

. Cache. The direct-mapped cache is addressed by the fields in the physical
address. Since each block is 4 bytes, the low-order 2 bits of the physical address
serve as the block offset (CO). Since there are 16 sets, the next 4 bits serve as
the set index (CI). The remaining 6 bits serve as the tag (CT).

Given this initial setup, let’s see what happens when the CPU executes a load
instruction that reads the byte at address 0x03d4. (Recall that our hypothetical
CPU reads one-byte words rather than four-byte words.) To begin this kind of
manual simulation, we find it helpful to write down the bits in the virtual address,
identify the various fields we will need, and determine their hex values. The
hardware performs a similar task when it decodes the address.

TLBT TLBI

0x03 0x03

bit position 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA = 0x03d4 0 0 0 0 1 1 1 1 0 1 0 1 0 0

VPN VPO

0x0f 0x14

To begin, the MMU extracts the VPN (0x0F) from the virtual address and
checks with the TLB to see if it has cached a copy of PTE 0x0F from some previous
memory reference. The TLB extracts the TLB index (0x03) and the TLB tag (0x3)
from the VPN, hits on a valid match in the second entry of Set 0x3, and returns
the cached PPN (0x0D) to the MMU.

If the TLB had missed, then the MMU would need to fetch the PTE from main
memory. However, in this case we got lucky and had a TLB hit. The MMU now has
everything it needs to form the physical address. It does this by concatenating the
PPN (0x0D) from the PTE with the VPO (0x14) from the virtual address, which
forms the physical address (0x354).

Next, the MMU sends the physical address to the cache, which extracts the
cache offset CO (0x0), the cache set index CI (0x5), and the cache tag CT (0x0D)
from the physical address.

798 Chapter 9 Virtual Memory

CT CI CO

0x0d 0x05 0x0

bit position 11 10 9 8 7 6 5 4 3 2 1 0
PA = 0x354 0 0 1 1 0 1 0 1 0 1 0 0

PPN PPO

0x0d 0x14

Since the tag in Set 0x5matches CT, the cache detects a hit, reads out the data
byte (0x36) at offset CO, and returns it to the MMU, which then passes it back to
the CPU.

Other paths through the translation process are also possible. For example, if
the TLB misses, then the MMU must fetch the PPN from a PTE in the page table.
If the resulting PTE is invalid, then there is a page fault and the kernel must page
in the appropriate page and rerun the load instruction. Another possibility is that
the PTE is valid, but the necessary memory block misses in the cache.

Practice Problem 9.4
Show how the example memory system in Section 9.6.4 translates a virtual address
into a physical address and accesses the cache. For the given virtual address,
indicate the TLB entry accessed, physical address, and cache byte value returned.
Indicate whether the TLB misses, whether a page fault occurs, and whether a cache
miss occurs. If there is a cache miss, enter “–” for “Cache byte returned.” If there
is a page fault, enter “–” for “PPN” and leave parts C and D blank.

Virtual address: 0x03d7

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 799

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.7 Case Study: The Intel Core i7/Linux Memory System

We conclude our discussion of virtual memory mechanisms with a case study of a
real system: an Intel Core i7 running Linux. The Core i7 is based on the Nehalem
microarchitecture. Although the Nehalem design allows for full 64-bit virtual and
physical address spaces, the current Core i7 implementations (and those for the
foreseeable future) support a 48-bit (256 TB) virtual address space and a 52-bit
(4 PB) physical address space, along with a compatability mode that supports 32-
bit (4 GB) virtual and physical address spaces.

Figure 9.21 gives the highlights of the Core i7 memory system. The processor
package includes four cores, a large L3 cache shared by all of the cores, and a

DDR3 memory controller
3 × 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

L2 unified TLB
512 entries, 4-way

Main memory

MMU
(addr translation)

To other
cores

To I/O
bridge

L1 i-TLB
128 entries, 4-way

L1 d-TLB
64 entries, 4-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

L1 i-cache
32 KB, 8-way

L1 d-cache
32 KB, 8-way

Instruction
fetch

Registers

QuickPath interconnect
4 links @ 25.6 GB/s

102.4 GB/s total

Processor package

Core ×4

Figure 9.21 The Core i7 memory system.

800 Chapter 9 Virtual Memory

DDR3 memory controller. Each core contains a hierarchy of TLBs, a hierarchy
of data and instruction caches, and a set of fast point-to-point links, based on
the Intel QuickPath technology, for communicating directly with the other cores
and the external I/O bridge. The TLBs are virtually addressed, and four-way set
associative. The L1, L2, and L3 caches are physically addressed, and eight-way
set associative, with a block size of 64 bytes. The page size can be configured at
start-up time as either 4 KB or 4 MB. Linux uses 4-KB pages.

9.7.1 Core i7 Address Translation

Figure 9.22 summarizes the entire Core i7 address translation process, from the
time the CPU generates a virtual address until a data word arrives from memory.
The Core i7 uses a four-level page table hierarchy. Each process has its own private
page table hierarchy. When a Linux process is running, the page tables associated
with allocated pages are all memory-resident, although the Core i7 architecture
allows these page tables to be swapped in and out. The CR3 control register points
to the beginning of the level 1 (L1) page table. The value of CR3 is part of each
process context, and is restored during each context switch.

. . .

. . .

CPU

VPN VPO

36 12

TLBT TLBI
32 4

VPN1 VPN2

PTEPTEPTEPTE

PPN PPO

40 129 9

VPN3 VPN4

9 9

TLB
miss

Virtual address (VA)

TLB
hit

L1 TLB (16 sets, 4 entries/set)

Page tables

Result

CR3

32/64

CT CI CO

40 66

L1
hit

L1 d-cache
(64 sets, 8 lines/set)

L2, L3, and
main memory

L1
miss

Physical
address

(PA)

Figure 9.22 Summary of Core i7 address translation. For simplicity, the i-caches, i-TLB, and
L2 unified TLB are not shown.

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 801

R/WU/SWTCDAPSGPage table physical base addr UnusedUnused P=1

Available for OS (page table location on disk) P=0

0123

XD

63 4567891112515262

Field Description

P Child page table present in physical memory (1) or not (0).
R/W Read-only or read-write access permission for all reachable pages.
U/S User or supervisor (kernel) mode access permission for all reachable pages.
WT Write-through or write-back cache policy for the child page table.
CD Caching disabled or enabled for the child page table.
A Reference bit (set by MMU on reads and writes, cleared by software).
PS Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).
Base addr 40 most significant bits of physical base address of child page table.
XD Disable or enable instruction fetches from all pages reachable from this PTE.

Figure 9.23 Format of level 1, level 2, and level 3 page table entries. Each entry
references a 4 KB child page table.

Figure 9.23 shows the format of an entry in a level 1, level 2, or level 3
page table. When P = 1 (which is always the case with Linux), the address field
contains a 40-bit physical page number (PPN) that points to the beginning of the
appropriate page table. Notice that this imposes a 4 KB alignment requirement
on page tables.

Figure 9.24 shows the format of an entry in a level 4 page table. When P = 1,
the address field contains a 40-bit PPN that points to the base of some page in
physical memory. Again, this imposes a 4 KB alignment requirement on physical
pages.

The PTE has three permission bits that control access to the page. The R/W bit
determines whether the contents of a page are read/write or read/only. The U/S

bit, which determines whether the page can be accessed in user mode, protects
code and data in the operating system kernel from user programs. The XD (exe-
cute disable) bit, which was introduced in 64-bit systems, can be used to disable
instruction fetches from individual memory pages. This is an important new fea-
ture that allows the operating system kernel to reduce the risk of buffer overflow
attacks by restricting execution to the read-only text segment.

As the MMU translates each virtual address, it also updates two other bits that
can be used by the kernel’s page fault handler. The MMU sets the A bit, which
is known as a reference bit, each time a page is accessed. The kernel can use the
reference bit to implement its page replacement algorithm. The MMU sets the D

bit, or dirty bit, each time the page is written to. A page that has been modified is
sometimes called a dirty page. The dirty bit tells the kernel whether or not it must
write-back a victim page before it copies in a replacement page. The kernel can
call a special kernel-mode instruction to clear the reference or dirty bits.

802 Chapter 9 Virtual Memory

R/WU/SWTCDA0 DGPage physical base addr UnusedUnused P=1

Available for OS (page table location on disk) P=0

0123

XD

63 4567891112515262

Field Description

P Child page present in physical memory (1) or not (0).
R/W Read-only or read/write access permission for child page.
U/S User or supervisor mode (kernel mode) access permission for child page.
WT Write-through or write-back cache policy for the child page.
CD Cache disabled or enabled.
A Reference bit (set by MMU on reads and writes, cleared by software).
D Dirty bit (set by MMU on writes, cleared by software).
G Global page (don’t evict from TLB on task switch).
Base addr 40 most significant bits of physical base address of child page.
XD Disable or enable instruction fetches from the child page.

Figure 9.24 Format of level 4 page table entries. Each entry references a 4 KB child
page.

Figure 9.25 shows how the Core i7 MMU uses the four levels of page tables
to translate a virtual address to a physical address. The 36-bit VPN is partitioned
into four 9-bit chunks, each of which is used as an offset into a page table. The
CR3 register contains the physical address of the L1 page table. VPN 1 provides
an offset to an L1 PTE, which contains the base address of the L2 page table. VPN
2 provides an offset to an L2 PTE, and so on.

Aside Optimizing address translation

In our discussion of address translation, we have described a sequential two-step process where the
MMU (1) translates the virtual address to a physical address, and then (2) passes the physical address
to the L1 cache. However, real hardware implementations use a neat trick that allows these steps to
be partially overlapped, thus speeding up accesses to the L1 cache. For example, a virtual address on
a Core i7 with 4 KB pages has 12 bits of VPO, and these bits are identical to the 12 bits of PPO in
the corresponding physical address. Since the eight-way set-associative physically addressed L1 caches
have 64 sets and 64-byte cache blocks, each physical address has 6 (log2 64) cache offset bits and 6
(log2 64) index bits. These 12 bits fit exactly in the 12-bit VPO of a virtual address, which is no accident!
When the CPU needs a virtual address translated, it sends the VPN to the MMU and the VPO to the
L1 cache. While the MMU is requesting a page table entry from the TLB, the L1 cache is busy using
the VPO bits to find the appropriate set and read out the eight tags and corresponding data words in
that set. When the MMU gets the PPN back from the TLB, the cache is ready to try to match the PPN
to one of these eight tags.

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 803

VPO

L4 PT
Page
table

4 KB
region

per entry

2 MB
region

per entry

1 GB
region

per entry

512 GB
region

per entry

L3 PT
Page middle

directory

L2 PT
Page upper

directory

L1 PT
Page global

directory

Physical
address
of L1 PT

Physical
address
of page

CR3

Physical address

Virtual address

PPN

Offset into
physical and
virtual page

L4 PTE

40

12

12

PPO
12

40

40

9
L3 PTE

40

9
L2 PTE

40

9
L1 PTE

40

9

VPN 4
9

VPN 3
9

VPN 2
9

VPN 1
9

Figure 9.25 Core i7 page table translation. Legend: PT: page table, PTE: page table entry, VPN: virtual page
number, VPO: virtual page offset, PPN: physical page number, PPO: physical page offset. The Linux names for
the four levels of page tables are also shown.

9.7.2 Linux Virtual Memory System

A virtual memory system requires close cooperation between the hardware and
the kernel. Details vary from version to version, and a complete description is
beyond our scope. Nonetheless, our aim in this section is to describe enough of
the Linux virtual memory system to give you a sense of how a real operating system
organizes virtual memory and how it handles page faults.

Linux maintains a separate virtual address space for each process of the form
shown in Figure 9.26. We have seen this picture a number of times already, with
its familiar code, data, heap, shared library, and stack segments. Now that we
understand address translation, we can fill in some more details about the kernel
virtual memory that lies above the user stack.

The kernel virtual memory contains the code and data structures in the kernel.
Some regions of the kernel virtual memory are mapped to physical pages that
are shared by all processes. For example, each process shares the kernel’s code
and global data structures. Interestingly, Linux also maps a set of contiguous
virtual pages (equal in size to the total amount of DRAM in the system) to the
corresponding set of contiguous physical pages. This provides the kernel with a
convenient way to access any specific location in physical memory, for example,

804 Chapter 9 Virtual Memory

Figure 9.26
The virtual memory of a
Linux process.

0x08048000 (32)
0x40000000 (64)

0

Process-specific data
structures

(e.g., page tables,
task and mm structs,

kernel stack)

Physical memory

Kernel code and data

Memory mapped region
for shared libraries

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)
Program text (.text)

User stack

Different for
each process

Identical for
each process

Process
virtual
memory

Kernel
virtual
memory

%esp

brk

when it needs to access page tables, or to perform memory-mapped I/O operations
on devices that are mapped to particular physical memory locations.

Other regions of kernel virtual memory contain data that differs for each
process. Examples include page tables, the stack that the kernel uses when it is
executing code in the context of the process, and various data structures that keep
track of the current organization of the virtual address space.

Linux Virtual Memory Areas

Linux organizes the virtual memory as a collection of areas (also called segments).
An area is a contiguous chunk of existing (allocated) virtual memory whose pages
are related in some way. For example, the code segment, data segment, heap,
shared library segment, and user stack are all distinct areas. Each existing virtual
page is contained in some area, and any virtual page that is not part of some area
does not exist and cannot be referenced by the process. The notion of an area is
important because it allows the virtual address space to have gaps. The kernel does
not keep track of virtual pages that do not exist, and such pages do not consume
any additional resources in memory, on disk, or in the kernel itself.

Figure 9.27 highlights the kernel data structures that keep track of the virtual
memory areas in a process. The kernel maintains a distinct task structure (task_
struct in the source code) for each process in the system. The elements of the task

Section 9.7 Case Study: The Intel Core i7/Linux Memory System 805

mm

task_struct

pgd

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

vm_start

vm_prot

vm_flags

vm_next

vm_end

Shared libraries

0

Data

Text

vm_start

vm_prot

vm_flags

vm_next

mmap

mm_struct
vm_area_struct

Process virtual memory

Figure 9.27 How Linux organizes virtual memory.

structure either contain or point to all of the information that the kernel needs to
run the process (e.g., the PID, pointer to the user stack, name of the executable
object file, and program counter).

One of the entries in the task structure points to an mm_struct that charac-
terizes the current state of the virtual memory. The two fields of interest to us
are pgd, which points to the base of the level 1 table (the page global directory),
and mmap, which points to a list of vm_area_structs (area structs), each of which
characterizes an area of the current virtual address space. When the kernel runs
this process, it stores pgd in the CR3 control register.

For our purposes, the area struct for a particular area contains the following
fields:

. vm_start: Points to the beginning of the area

. vm_end: Points to the end of the area

. vm_prot: Describes the read/write permissions for all of the pages contained
in the area

. vm_flags: Describes (among other things) whether the pages in the area are
shared with other processes or private to this process

. vm_next: Points to the next area struct in the list

806 Chapter 9 Virtual Memory

Linux Page Fault Exception Handling

Suppose the MMU triggers a page fault while trying to translate some virtual
address A. The exception results in a transfer of control to the kernel’s page fault
handler, which then performs the following steps:

1. Is virtual address A legal? In other words, does A lie within an area defined by
some area struct? To answer this question, the fault handler searches the list of
area structs, comparing A with the vm_start and vm_end in each area struct.
If the instruction is not legal, then the fault handler triggers a segmentation
fault, which terminates the process. This situation is labeled “1” in Figure 9.28.

Because a process can create an arbitrary number of new virtual memory
areas (using the mmap function described in the next section), a sequential
search of the list of area structs might be very costly. So in practice, Linux
superimposes a tree on the list, using some fields that we have not shown, and
performs the search on this tree.

2. Is the attempted memory access legal? In other words, does the process have
permission to read, write, or execute the pages in this area? For example, was
the page fault the result of a store instruction trying to write to a read-only
page in the text segment? Is the page fault the result of a process running
in user mode that is attempting to read a word from kernel virtual memory?
If the attempted access is not legal, then the fault handler triggers a protec-
tion exception, which terminates the process. This situation is labeled “2” in
Figure 9.28.

Process virtual memory

Shared libraries

Data

Text

Segmentation fault:
accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page

1

3

2

vm_area_struct

0

vm_end

vm_start

r/o

vm_next

vm_end

vm_start

r/w

vm_next

vm_end

vm_start

r/o

vm_next

Figure 9.28 Linux page fault handling.

Section 9.8 Memory Mapping 807

3. At this point, the kernel knows that the page fault resulted from a legal
operation on a legal virtual address. It handles the fault by selecting a victim
page, swapping out the victim page if it is dirty, swapping in the new page,
and updating the page table. When the page fault handler returns, the CPU
restarts the faulting instruction, which sends A to the MMU again. This time,
the MMU translates A normally, without generating a page fault.

9.8 Memory Mapping

Linux (along with other forms of Unix) initializes the contents of a virtual memory
area by associating it with an object on disk, a process known as memory mapping.
Areas can be mapped to one of two types of objects:

1. Regular file in the Unix file system: An area can be mapped to a contiguous
section of a regular disk file, such as an executable object file. The file section is
divided into page-sized pieces, with each piece containing the initial contents
of a virtual page. Because of demand paging, none of these virtual pages is
actually swapped into physical memory until the CPU first touches the page
(i.e., issues a virtual address that falls within that page’s region of the address
space). If the area is larger than the file section, then the area is padded with
zeros.

2. Anonymous file: An area can also be mapped to an anonymous file, created
by the kernel, that contains all binary zeros. The first time the CPU touches
a virtual page in such an area, the kernel finds an appropriate victim page
in physical memory, swaps out the victim page if it is dirty, overwrites the
victim page with binary zeros, and updates the page table to mark the page
as resident. Notice that no data is actually transferred between disk and
memory. For this reason, pages in areas that are mapped to anonymous files
are sometimes called demand-zero pages.

In either case, once a virtual page is initialized, it is swapped back and forth
between a special swap file maintained by the kernel. The swap file is also known
as the swap space or the swap area. An important point to realize is that at any
point in time, the swap space bounds the total amount of virtual pages that can be
allocated by the currently running processes.

9.8.1 Shared Objects Revisited

The idea of memory mapping resulted from a clever insight that if the virtual
memory system could be integrated into the conventional file system, then it could
provide a simple and efficient way to load programs and data into memory.

As we have seen, the process abstraction promises to provide each process
with its own private virtual address space that is protected from errant writes
or reads by other processes. However, many processes have identical read-only
text areas. For example, each process that runs the Unix shell program tcsh has
the same text area. Further, many programs need to access identical copies of

808 Chapter 9 Virtual Memory

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Shared
object

(a)

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Shared
object

(b)

Figure 9.29 A shared object. (a) After process 1 maps the shared object. (b) After process 2 maps the same
shared object. (Note that the physical pages are not necessarily contiguous.)

read-only run-time library code. For example, every C program requires functions
from the standard C library such as printf. It would be extremely wasteful for
each process to keep duplicate copies of these commonly used codes in physical
memory. Fortunately, memory mapping provides us with a clean mechanism for
controlling how objects are shared by multiple processes.

An object can be mapped into an area of virtual memory as either a shared
object or a private object. If a process maps a shared object into an area of its virtual
address space, then any writes that the process makes to that area are visible to
any other processes that have also mapped the shared object into their virtual
memory. Further, the changes are also reflected in the original object on disk.

Changes made to an area mapped to a private object, on the other hand, are
not visible to other processes, and any writes that the process makes to the area
are not reflected back to the object on disk. A virtual memory area into which a
shared object is mapped is often called a shared area. Similarly for a private area.

Suppose that process 1 maps a shared object into an area of its virtual memory,
as shown in Figure 9.29(a). Now suppose that process 2 maps the same shared ob-
ject into its address space (not necessarily at the same virtual address as process 1),
as shown in Figure 9.29(b).

Since each object has a unique file name, the kernel can quickly determine
that process 1 has already mapped this object and can point the page table entries
in process 2 to the appropriate physical pages. The key point is that only a single
copy of the shared object needs to be stored in physical memory, even though the
object is mapped into multiple shared areas. For convenience, we have shown the
physical pages as being contiguous, but of course this is not true in general.

Private objects are mapped into virtual memory using a clever technique
known as copy-on-write. A private object begins life in exactly the same way as a

Section 9.8 Memory Mapping 809

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Private
copy-on-write object

(a)

Process 1
virtual memory

Process 2
virtual memory

Physical
memory

Private
copy-on-write object

(b)

copy-on-write

Write to private
copy-on-write

page

Figure 9.30 A private copy-on-write object. (a) After both processes have mapped the private copy-on-write
object. (b) After process 2 writes to a page in the private area.

shared object, with only one copy of the private object stored in physical memory.
For example, Figure 9.30(a) shows a case where two processes have mapped a
private object into different areas of their virtual memories but share the same
physical copy of the object. For each process that maps the private object, the page
table entries for the corresponding private area are flagged as read-only, and the
area struct is flagged as private copy-on-write. So long as neither process attempts
to write to its respective private area, they continue to share a single copy of the
object in physical memory. However, as soon as a process attempts to write to
some page in the private area, the write triggers a protection fault.

When the fault handler notices that the protection exception was caused by
the process trying to write to a page in a private copy-on-write area, it creates a
new copy of the page in physical memory, updates the page table entry to point
to the new copy, and then restores write permissions to the page, as shown in
Figure 9.30(b). When the fault handler returns, the CPU reexecutes the write,
which now proceeds normally on the newly created page.

By deferring the copying of the pages in private objects until the last possible
moment, copy-on-write makes the most efficient use of scarce physical memory.

9.8.2 The fork Function Revisited

Now that we understand virtual memory and memory mapping, we can get a clear
idea of how the fork function creates a new process with its own independent
virtual address space.

When the fork function is called by the current process, the kernel creates
various data structures for the new process and assigns it a unique PID. To create
the virtual memory for the new process, it creates exact copies of the current

810 Chapter 9 Virtual Memory

process’s mm_struct, area structs, and page tables. It flags each page in both
processes as read-only, and flags each area struct in both processes as private copy-
on-write.

When the fork returns in the new process, the new process now has an exact
copy of the virtual memory as it existed when the fork was called. When either
of the processes performs any subsequent writes, the copy-on-write mechanism
creates new pages, thus preserving the abstraction of a private address space for
each process.

9.8.3 The execve Function Revisited

Virtual memory and memory mapping also play key roles in the process of loading
programs into memory. Now that we understand these concepts, we can under-
stand how the execve function really loads and executes programs. Suppose that
the program running in the current process makes the following call:

Execve("a.out", NULL, NULL);

As you learned in Chapter 8, the execve function loads and runs the program
contained in the executable object file a.outwithin the current process, effectively
replacing the current program with the a.out program. Loading and running
a.out requires the following steps:

. Delete existing user areas. Delete the existing area structs in the user portion
of the current process’s virtual address.

. Map private areas. Create new area structs for the text, data, bss, and stack
areas of the new program. All of these new areas are private copy-on-write.
The text and data areas are mapped to the text and data sections of the a.out
file. The bss area is demand-zero, mapped to an anonymous file whose size is
contained in a.out. The stack and heap area are also demand-zero, initially
of zero-length. Figure 9.31 summarizes the different mappings of the private
areas.

. Map shared areas. If the a.out program was linked with shared objects, such
as the standard C library libc.so, then these objects are dynamically linked
into the program, and then mapped into the shared region of the user’s virtual
address space.

. Set the program counter (PC). The last thing that execve does is to set the
program counter in the current process’s context to point to the entry point
in the text area.

The next time this process is scheduled, it will begin execution from the entry
point. Linux will swap in code and data pages as needed.

9.8.4 User-level Memory Mapping with the mmap Function

Unix processes can use the mmap function to create new areas of virtual memory
and to map objects into these areas.

Section 9.8 Memory Mapping 811

Figure 9.31
How the loader maps the
areas of the user address
space.

Memory mapped region
for shared libraries

User stack

0

Run-time heap (via malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

Private, demand-zero

Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

.data

.text

libc.so

.data

.text

a.out

#include <unistd.h>

#include <sys/mman.h>

void *mmap(void *start, size_t length, int prot, int flags,

int fd, off_t offset);

Returns: pointer to mapped area if OK, MAP_FAILED (−1) on error

The mmap function asks the kernel to create a new virtual memory area,
preferably one that starts at address start, and to map a contiguous chunk of
the object specified by file descriptor fd to the new area. The contiguous object
chunk has a size of length bytes and starts at an offset of offset bytes from the
beginning of the file. The start address is merely a hint, and is usually specified as
NULL. For our purposes, we will always assume a NULL start address. Figure 9.32
depicts the meaning of these arguments.

The prot argument contains bits that describe the access permissions of the
newly mapped virtual memory area (i.e., the vm_prot bits in the corresponding
area struct).

. PROT_EXEC: Pages in the area consist of instructions that may be executed
by the CPU.

. PROT_READ: Pages in the area may be read.

. PROT_WRITE: Pages in the area may be written.

. PROT_NONE: Pages in the area cannot be accessed.

812 Chapter 9 Virtual Memory

Figure 9.32
Visual interpretation of
mmap arguments.

length (bytes)

length (bytes)

offset
(bytes)

Disk file specified by
file descriptor fd

Process
virtual memory

start
(or address

chosen by the
kernel)

0 0

The flags argument consists of bits that describe the type of the mapped
object. If the MAP_ANON flag bit is set, then the backing store is an anonymous
object and the corresponding virtual pages are demand-zero. MAP_PRIVATE
indicates a private copy-on-write object, and MAP_SHARED indicates a shared
object. For example,

bufp = Mmap(-1, size, PROT_READ, MAP_PRIVATE|MAP_ANON, 0, 0);

asks the kernel to create a new read-only, private, demand-zero area of virtual
memory containing size bytes. If the call is successful, then bufp contains the
address of the new area.

The munmap function deletes regions of virtual memory:

#include <unistd.h>

#include <sys/mman.h>

int munmap(void *start, size_t length);

Returns: 0 if OK, −1 on error

The munmap function deletes the area starting at virtual address start and consist-
ing of the next length bytes. Subsequent references to the deleted region result
in segmentation faults.

Practice Problem 9.5
Write a C programmmapcopy.c that usesmmap to copy an arbitrary-sized disk file to
stdout. The name of the input file should be passed as a command line argument.

9.9 Dynamic Memory Allocation

While it is certainly possible to use the low-level mmap and munmap functions to
create and delete areas of virtual memory, C programmers typically find it more

Section 9.9 Dynamic Memory Allocation 813

Figure 9.33
The heap.

Memory mapped region
for shared libraries

User stack

0

Heap

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

Top of the heap
(brk ptr)

convenient and more portable to use a dynamic memory allocator when they need
to acquire additional virtual memory at run time.

A dynamic memory allocator maintains an area of a process’s virtual memory
known as the heap (Figure 9.33). Details vary from system to system, but without
loss of generality, we will assume that the heap is an area of demand-zero mem-
ory that begins immediately after the uninitialized bss area and grows upward
(toward higher addresses). For each process, the kernel maintains a variable brk
(pronounced “break”) that points to the top of the heap.

An allocator maintains the heap as a collection of various-sized blocks. Each
block is a contiguous chunk of virtual memory that is either allocated or free. An
allocated block has been explicitly reserved for use by the application. A free block
is available to be allocated. A free block remains free until it is explicitly allocated
by the application. An allocated block remains allocated until it is freed, either
explicitly by the application, or implicitly by the memory allocator itself.

Allocators come in two basic styles. Both styles require the application to
explicitly allocate blocks. They differ about which entity is responsible for freeing
allocated blocks.

. Explicit allocators require the application to explicitly free any allocated
blocks. For example, the C standard library provides an explicit allocator
called the malloc package. C programs allocate a block by calling the malloc
function, and free a block by calling the free function. The new and delete
calls in C++ are comparable.

. Implicit allocators, on the other hand, require the allocator to detect when
an allocated block is no longer being used by the program and then free
the block. Implicit allocators are also known as garbage collectors, and the

814 Chapter 9 Virtual Memory

process of automatically freeing unused allocated blocks is known as garbage
collection. For example, higher-level languages such as Lisp, ML, and Java rely
on garbage collection to free allocated blocks.

The remainder of this section discusses the design and implementation of
explicit allocators. We will discuss implicit allocators in Section 9.10. For concrete-
ness, our discussion focuses on allocators that manage heap memory. However,
you should be aware that memory allocation is a general idea that arises in a vari-
ety of contexts. For example, applications that do intensive manipulation of graphs
will often use the standard allocator to acquire a large block of virtual memory,
and then use an application-specific allocator to manage the memory within that
block as the nodes of the graph are created and destroyed.

9.9.1 The malloc and free Functions

The C standard library provides an explicit allocator known as themallocpackage.
Programs allocate blocks from the heap by calling the malloc function.

#include <stdlib.h>

void *malloc(size_t size);

Returns: ptr to allocated block if OK, NULL on error

The malloc function returns a pointer to a block of memory of at least size bytes
that is suitably aligned for any kind of data object that might be contained in the
block. On the Unix systems that we are familiar with, malloc returns a block that
is aligned to an 8-byte (double word) boundary.

Aside How big is a word?

Recall from our discussion of machine code in Chapter 3 that Intel refers to 4-byte objects as double
words. However, throughout this section, we will assume that words are 4-byte objects and that double
words are 8-byte objects, which is consistent with conventional terminology.

If malloc encounters a problem (e.g., the program requests a block of memory
that is larger than the available virtual memory), then it returns NULL and sets
errno. Malloc does not initialize the memory it returns. Applications that want
initialized dynamic memory can use calloc, a thin wrapper around the malloc
function that initializes the allocated memory to zero. Applications that want to
change the size of a previously allocated block can use the realloc function.

Dynamic memory allocators such as malloc can allocate or deallocate heap
memory explicitly by using the mmap and munmap functions, or they can use the
sbrk function:

Section 9.9 Dynamic Memory Allocation 815

#include <unistd.h>

void *sbrk(intptr_t incr);

Returns: old brk pointer on success, −1 on error

The sbrk function grows or shrinks the heap by adding incr to the kernel’s brk
pointer. If successful, it returns the old value of brk, otherwise it returns −1 and
sets errno to ENOMEM. If incr is zero, then sbrk returns the current value of
brk. Calling sbrk with a negative incr is legal but tricky because the return value
(the old value of brk) points to abs(incr) bytes past the new top of the heap.

Programs free allocated heap blocks by calling the free function.

#include <stdlib.h>

void free(void *ptr);

Returns: nothing

The ptr argument must point to the beginning of an allocated block that was
obtained from malloc, calloc, or realloc. If not, then the behavior of free
is undefined. Even worse, since it returns nothing, free gives no indication to
the application that something is wrong. As we shall see in Section 9.11, this can
produce some baffling run-time errors.

Figure 9.34 shows how an implementation of malloc and freemight manage
a (very) small heap of 16 words for a C program. Each box represents a 4-byte
word. The heavy-lined rectangles correspond to allocated blocks (shaded) and
free blocks (unshaded). Initially, the heap consists of a single 16-word double-
word aligned free block.

. Figure 9.34(a): The program asks for a four-word block. Malloc responds by
carving out a four-word block from the front of the free block and returning
a pointer to the first word of the block.

. Figure 9.34(b): The program requests a five-word block. Malloc responds by
allocating a six-word block from the front of the free block. In this example,
malloc pads the block with an extra word in order to keep the free block
aligned on a double-word boundary.

. Figure 9.34(c): The program requests a six-word block and malloc responds
by carving out a six-word block from the free block.

. Figure 9.34(d): The program frees the six-word block that was allocated in
Figure 9.34(b). Notice that after the call to free returns, the pointer p2 still
points to the freed block. It is the responsibility of the application not to use
p2 again until it is reinitialized by a new call to malloc.

816 Chapter 9 Virtual Memory

p1

(a) p1 = malloc(4*sizeof(int))

p1 p2

(b) p2 = malloc(5*sizeof(int))

p1 p2 p3

(c) p3 = malloc(6*sizeof(int))

p1 p2 p3

(d) free(p2)

p1 p2 p4 p3

(e) p4 = malloc(2*sizeof(int))

Figure 9.34 Allocating and freeing blocks with malloc and free. Each square
corresponds to a word. Each heavy rectangle corresponds to a block. Allocated blocks
are shaded. Padded regions of allocated blocks are shaded with stripes. Free blocks are
unshaded. Heap addresses increase from left to right.

. Figure 9.34(e): The program requests a two-word block. In this case, malloc
allocates a portion of the block that was freed in the previous step and returns
a pointer to this new block.

9.9.2 Why Dynamic Memory Allocation?

The most important reason that programs use dynamic memory allocation is that
often they do not know the sizes of certain data structures until the program
actually runs. For example, suppose we are asked to write a C program that reads
a list of n ASCII integers, one integer per line, from stdin into a C array. The
input consists of the integer n, followed by the n integers to be read and stored
into the array. The simplest approach is to define the array statically with some
hard-coded maximum array size:

1 #include "csapp.h"

2 #define MAXN 15213

3

4 int array[MAXN];

Section 9.9 Dynamic Memory Allocation 817

5

6 int main()

7 {

8 int i, n;

9

10 scanf("%d", &n);

11 if (n > MAXN)

12 app_error("Input file too big");

13 for (i = 0; i < n; i++)

14 scanf("%d", &array[i]);

15 exit(0);

16 }

Allocating arrays with hard-coded sizes like this is often a bad idea. The value
of MAXN is arbitrary and has no relation to the actual amount of available virtual
memory on the machine. Further, if the user of this program wanted to read a file
that was larger than MAXN, the only recourse would be to recompile the program
with a larger value of MAXN. While not a problem for this simple example, the
presence of hard-coded array bounds can become a maintenance nightmare for
large software products with millions of lines of code and numerous users.

A better approach is to allocate the array dynamically, at run time, after the
value of n becomes known. With this approach, the maximum size of the array is
limited only by the amount of available virtual memory.

1 #include "csapp.h"

2

3 int main()

4 {

5 int *array, i, n;

6

7 scanf("%d", &n);

8 array = (int *)Malloc(n * sizeof(int));

9 for (i = 0; i < n; i++)

10 scanf("%d", &array[i]);

11 exit(0);

12 }

Dynamic memory allocation is a useful and important programming tech-
nique. However, in order to use allocators correctly and efficiently, programmers
need to have an understanding of how they work. We will discuss some of the grue-
some errors that can result from the improper use of allocators in Section 9.11.

9.9.3 Allocator Requirements and Goals

Explicit allocators must operate within some rather stringent constraints.

. Handling arbitrary request sequences. An application can make an arbitrary
sequence of allocate and free requests, subject to the constraint that each

818 Chapter 9 Virtual Memory

free request must correspond to a currently allocated block obtained from
a previous allocate request. Thus, the allocator cannot make any assumptions
about the ordering of allocate and free requests. For example, the allocator
cannot assume that all allocate requests are accompanied by a matching free
request, or that matching allocate and free requests are nested.

. Making immediate responses to requests. The allocator must respond imme-
diately to allocate requests. Thus, the allocator is not allowed to reorder or
buffer requests in order to improve performance.

. Using only the heap. In order for the allocator to be scalable, any non-scalar
data structures used by the allocator must be stored in the heap itself.

. Aligning blocks (alignment requirement). The allocator must align blocks in
such a way that they can hold any type of data object. On most systems, this
means that the block returned by the allocator is aligned on an 8-byte (double-
word) boundary.

. Not modifying allocated blocks.Allocators can only manipulate or change free
blocks. In particular, they are not allowed to modify or move blocks once they
are allocated. Thus, techniques such as compaction of allocated blocks are not
permitted.

Working within these constraints, the author of an allocator attempts to meet
the often conflicting performance goals of maximizing throughput and memory
utilization.

. Goal 1: Maximizing throughput. Given some sequence of n allocate and free
requests

R0, R1, . . . , Rk, . . . , Rn−1

we would like to maximize an allocator’s throughput, which is defined as the
number of requests that it completes per unit time. For example, if an allo-
cator completes 500 allocate requests and 500 free requests in 1 second, then
its throughput is 1,000 operations per second. In general, we can maximize
throughput by minimizing the average time to satisfy allocate and free re-
quests. As we’ll see, it is not too difficult to develop allocators with reasonably
good performance where the worst-case running time of an allocate request
is linear in the number of free blocks and the running time of a free request
is constant.

. Goal 2: Maximizing memory utilization.Naive programmers often incorrectly
assume that virtual memory is an unlimited resource. In fact, the total amount
of virtual memory allocated by all of the processes in a system is limited by the
amount of swap space on disk. Good programmers know that virtual memory
is a finite resource that must be used efficiently. This is especially true for
a dynamic memory allocator that might be asked to allocate and free large
blocks of memory.

There are a number of ways to characterize how efficiently an allocator
uses the heap. In our experience, the most useful metric is peak utilization. As

Section 9.9 Dynamic Memory Allocation 819

before, we are given some sequence of n allocate and free requests

R0, R1, . . . , Rk, . . . , Rn−1

If an application requests a block of p bytes, then the resulting allocated block
has a payload of p bytes. After request Rk has completed, let the aggregate
payload, denoted Pk, be the sum of the payloads of the currently allocated
blocks, and let Hk denote the current (monotonically nondecreasing) size of
the heap.

Then the peak utilization over the first k requests, denoted by Uk, is
given by

Uk = maxi≤k Pi

Hk

The objective of the allocator then is to maximize the peak utilization Un−1
over the entire sequence. As we will see, there is a tension between maximiz-
ing throughput and utilization. In particular, it is easy to write an allocator
that maximizes throughput at the expense of heap utilization. One of the in-
teresting challenges in any allocator design is finding an appropriate balance
between the two goals.

Aside Relaxing the monotonicity assumption

We could relax the monotonically nondecreasing assumption in our definition of Uk and allow the heap
to grow up and down by letting Hk be the highwater mark over the first k requests.

9.9.4 Fragmentation

The primary cause of poor heap utilization is a phenomenon known as fragmen-
tation, which occurs when otherwise unused memory is not available to satisfy
allocate requests. There are two forms of fragmentation: internal fragmentation
and external fragmentation.

Internal fragmentation occurs when an allocated block is larger than the pay-
load. This might happen for a number of reasons. For example, the implementation
of an allocator might impose a minimum size on allocated blocks that is greater
than some requested payload. Or, as we saw in Figure 9.34(b), the allocator might
increase the block size in order to satisfy alignment constraints.

Internal fragmentation is straightforward to quantify. It is simply the sum of
the differences between the sizes of the allocated blocks and their payloads. Thus,
at any point in time, the amount of internal fragmentation depends only on the
pattern of previous requests and the allocator implementation.

External fragmentation occurs when there is enough aggregate free memory
to satisfy an allocate request, but no single free block is large enough to handle the
request. For example, if the request in Figure 9.34(e) were for six words rather than
two words, then the request could not be satisfied without requesting additional
virtual memory from the kernel, even though there are six free words remaining

820 Chapter 9 Virtual Memory

in the heap. The problem arises because these six words are spread over two free
blocks.

External fragmentation is much more difficult to quantify than internal frag-
mentation because it depends not only on the pattern of previous requests and the
allocator implementation, but also on the pattern of future requests. For example,
suppose that after k requests all of the free blocks are exactly four words in size.
Does this heap suffer from external fragmentation? The answer depends on the
pattern of future requests. If all of the future allocate requests are for blocks that
are smaller than or equal to four words, then there is no external fragmentation.
On the other hand, if one or more requests ask for blocks larger than four words,
then the heap does suffer from external fragmentation.

Since external fragmentation is difficult to quantify and impossible to predict,
allocators typically employ heuristics that attempt to maintain small numbers of
larger free blocks rather than large numbers of smaller free blocks.

9.9.5 Implementation Issues

The simplest imaginable allocator would organize the heap as a large array of
bytes and a pointer p that initially points to the first byte of the array. To allocate
size bytes, malloc would save the current value of p on the stack, increment p by
size, and return the old value of p to the caller. Free would simply return to the
caller without doing anything.

This naive allocator is an extreme point in the design space. Since each malloc
and free execute only a handful of instructions, throughput would be extremely
good. However, since the allocator never reuses any blocks, memory utilization
would be extremely bad. A practical allocator that strikes a better balance between
throughput and utilization must consider the following issues:

. Free block organization: How do we keep track of free blocks?

. Placement: How do we choose an appropriate free block in which to place a
newly allocated block?

. Splitting: After we place a newly allocated block in some free block, what do
we do with the remainder of the free block?

. Coalescing: What do we do with a block that has just been freed?

The rest of this section looks at these issues in more detail. Since the basic
techniques of placement, splitting, and coalescing cut across many different free
block organizations, we will introduce them in the context of a simple free block
organization known as an implicit free list.

9.9.6 Implicit Free Lists

Any practical allocator needs some data structure that allows it to distinguish
block boundaries and to distinguish between allocated and free blocks. Most
allocators embed this information in the blocks themselves. One simple approach
is shown in Figure 9.35.

Section 9.9 Dynamic Memory Allocation 821

Header

Block size

Payload
(allocated block only)

Padding (optional)

0 0 a

The block size includes
the header, payload, and
any padding

a = 1: Allocated
a = 0: Free

malloc returns a
pointer to the beginning
of the payload

31 3 2 1 0

Figure 9.35 Format of a simple heap block.

In this case, a block consists of a one-word header, the payload, and possibly
some additional padding. The header encodes the block size (including the header
and any padding) as well as whether the block is allocated or free. If we impose
a double-word alignment constraint, then the block size is always a multiple of
eight and the 3 low-order bits of the block size are always zero. Thus, we need to
store only the 29 high-order bits of the block size, freeing the remaining 3 bits
to encode other information. In this case, we are using the least significant of
these bits (the allocated bit) to indicate whether the block is allocated or free.
For example, suppose we have an allocated block with a block size of 24 (0x18)
bytes. Then its header would be

0x00000018 | 0x1 = 0x00000019

Similarly, a free block with a block size of 40 (0x28) bytes would have a header of

0x00000028 | 0x0 = 0x00000028

The header is followed by the payload that the application requested when it
called malloc. The payload is followed by a chunk of unused padding that can be
any size. There are a number of reasons for the padding. For example, the padding
might be part of an allocator’s strategy for combating external fragmentation. Or
it might be needed to satisfy the alignment requirement.

Given the block format in Figure 9.35, we can organize the heap as a sequence
of contiguous allocated and free blocks, as shown in Figure 9.36.

Unused
Start

of
heap

8/0 16/1 32/0 16/1 0/1
Double-

word
aligned

Figure 9.36 Organizing the heap with an implicit free list. Allocated blocks are shaded. Free blocks are
unshaded. Headers are labeled with (size (bytes)/allocated bit).

822 Chapter 9 Virtual Memory

We call this organization an implicit free list because the free blocks are linked
implicitly by the size fields in the headers. The allocator can indirectly traverse
the entire set of free blocks by traversing all of the blocks in the heap. Notice that
we need some kind of specially marked end block, in this example a terminating
header with the allocated bit set and a size of zero. (As we will see in Section 9.9.12,
setting the allocated bit simplifies the coalescing of free blocks.)

The advantage of an implicit free list is simplicity. A significant disadvantage
is that the cost of any operation, such as placing allocated blocks, that requires a
search of the free list will be linear in the total number of allocated and free blocks
in the heap.

It is important to realize that the system’s alignment requirement and the
allocator’s choice of block format impose a minimum block size on the allocator.
No allocated or free block may be smaller than this minimum. For example, if we
assume a double-word alignment requirement, then the size of each block must
be a multiple of two words (8 bytes). Thus, the block format in Figure 9.35 induces
a minimum block size of two words: one word for the header, and another to
maintain the alignment requirement. Even if the application were to request a
single byte, the allocator would still create a two-word block.

Practice Problem 9.6
Determine the block sizes and header values that would result from the following
sequence of malloc requests. Assumptions: (1) The allocator maintains double-
word alignment, and uses an implicit free list with the block format from Fig-
ure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes.

Request Block size (decimal bytes) Block header (hex)

malloc(1)

malloc(5)

malloc(12)

malloc(13)

9.9.7 Placing Allocated Blocks

When an application requests a block of k bytes, the allocator searches the free
list for a free block that is large enough to hold the requested block. The manner
in which the allocator performs this search is determined by the placement policy.
Some common policies are first fit, next fit, and best fit.

First fit searches the free list from the beginning and chooses the first free
block that fits. Next fit is similar to first fit, but instead of starting each search at
the beginning of the list, it starts each search where the previous search left off.
Best fit examines every free block and chooses the free block with the smallest size
that fits.

An advantage of first fit is that it tends to retain large free blocks at the end
of the list. A disadvantage is that it tends to leave “splinters” of small free blocks

Section 9.9 Dynamic Memory Allocation 823

Unused
Start

of
heap

8/0 16/1 16/1 16/116/0 0/1
Double-

word
aligned

Figure 9.37 Splitting a free block to satisfy a three-word allocation request. Allocated blocks are shaded.
Free blocks are unshaded. Headers are labeled with (size (bytes)/allocated bit).

toward the beginning of the list, which will increase the search time for larger
blocks. Next fit was first proposed by Donald Knuth as an alternative to first fit,
motivated by the idea that if we found a fit in some free block the last time, there
is a good chance that we will find a fit the next time in the remainder of the block.
Next fit can run significantly faster than first fit, especially if the front of the list
becomes littered with many small splinters. However, some studies suggest that
next fit suffers from worse memory utilization than first fit. Studies have found
that best fit generally enjoys better memory utilization than either first fit or next
fit. However, the disadvantage of using best fit with simple free list organizations
such as the implicit free list, is that it requires an exhaustive search of the heap.
Later, we will look at more sophisticated segregated free list organizations that
approximate a best-fit policy without an exhaustive search of the heap.

9.9.8 Splitting Free Blocks

Once the allocator has located a free block that fits, it must make another policy
decision about how much of the free block to allocate. One option is to use
the entire free block. Although simple and fast, the main disadvantage is that it
introduces internal fragmentation. If the placement policy tends to produce good
fits, then some additional internal fragmentation might be acceptable.

However, if the fit is not good, then the allocator will usually opt to split
the free block into two parts. The first part becomes the allocated block, and the
remainder becomes a new free block. Figure 9.37 shows how the allocator might
split the eight-word free block in Figure 9.36 to satisfy an application’s request for
three words of heap memory.

9.9.9 Getting Additional Heap Memory

What happens if the allocator is unable to find a fit for the requested block? One
option is to try to create some larger free blocks by merging (coalescing) free
blocks that are physically adjacent in memory (next section). However, if this
does not yield a sufficiently large block, or if the free blocks are already maximally
coalesced, then the allocator asks the kernel for additional heap memory by calling
the sbrk function. The allocator transforms the additional memory into one large
free block, inserts the block into the free list, and then places the requested block
in this new free block.

824 Chapter 9 Virtual Memory

Unused
Start

of
heap

8/0 16/1 16/0 16/116/0 0/1
Double-

word
aligned

Figure 9.38 An example of false fragmentation. Allocated blocks are shaded. Free blocks are unshaded.
Headers are labeled with (size (bytes)/allocated bit).

9.9.10 Coalescing Free Blocks

When the allocator frees an allocated block, there might be other free blocks
that are adjacent to the newly freed block. Such adjacent free blocks can cause
a phenomenon known as false fragmentation, where there is a lot of available free
memory chopped up into small, unusable free blocks. For example, Figure 9.38
shows the result of freeing the block that was allocated in Figure 9.37. The result
is two adjacent free blocks with payloads of three words each. As a result, a
subsequent request for a payload of four words would fail, even though the
aggregate size of the two free blocks is large enough to satisfy the request.

To combat false fragmentation, any practical allocator must merge adjacent
free blocks in a process known as coalescing. This raises an important policy
decision about when to perform coalescing. The allocator can opt for immediate
coalescing by merging any adjacent blocks each time a block is freed. Or it can opt
for deferred coalescing by waiting to coalesce free blocks at some later time. For
example, the allocator might defer coalescing until some allocation request fails,
and then scan the entire heap, coalescing all free blocks.

Immediate coalescing is straightforward and can be performed in constant
time, but with some request patterns it can introduce a form of thrashing where a
block is repeatedly coalesced and then split soon thereafter. For example, in Fig-
ure 9.38 a repeated pattern of allocating and freeing a three-word block would
introduce a lot of unnecessary splitting and coalescing. In our discussion of allo-
cators, we will assume immediate coalescing, but you should be aware that fast
allocators often opt for some form of deferred coalescing.

9.9.11 Coalescing with Boundary Tags

How does an allocator implement coalescing? Let us refer to the block we want
to free as the current block. Then coalescing the next free block (in memory) is
straightforward and efficient. The header of the current block points to the header
of the next block, which can be checked to determine if the next block is free. If
so, its size is simply added to the size of the current header and the blocks are
coalesced in constant time.

But how would we coalesce the previous block? Given an implicit free list of
blocks with headers, the only option would be to search the entire list, remember-
ing the location of the previous block, until we reached the current block. With an

Section 9.9 Dynamic Memory Allocation 825

Figure 9.39
Format of heap block that
uses a boundary tag.

Block size

Payload
(allocated block only)

Padding (optional)

a/f
a = 001: Allocated
a = 000: Free

Block size a/f

31 3 2 1 0

Header

Footer

implicit free list, this means that each call to freewould require time linear in the
size of the heap. Even with more sophisticated free list organizations, the search
time would not be constant.

Knuth developed a clever and general technique, known as boundary tags,
that allows for constant-time coalescing of the previous block. The idea, which is
shown in Figure 9.39, is to add a footer (the boundary tag) at the end of each block,
where the footer is a replica of the header. If each block includes such a footer,
then the allocator can determine the starting location and status of the previous
block by inspecting its footer, which is always one word away from the start of the
current block.

Consider all the cases that can exist when the allocator frees the current block:

1. The previous and next blocks are both allocated.
2. The previous block is allocated and the next block is free.
3. The previous block is free and the next block is allocated.
4. The previous and next blocks are both free.

Figure 9.40 shows how we would coalesce each of the four cases. In case 1, both
adjacent blocks are allocated and thus no coalescing is possible. So the status of the
current block is simply changed from allocated to free. In case 2, the current block
is merged with the next block. The header of the current block and the footer of
the next block are updated with the combined sizes of the current and next blocks.
In case 3, the previous block is merged with the current block. The header of the
previous block and the footer of the current block are updated with the combined
sizes of the two blocks. In case 4, all three blocks are merged to form a single
free block, with the header of the previous block and the footer of the next block
updated with the combined sizes of the three blocks. In each case, the coalescing
is performed in constant time.

The idea of boundary tags is a simple and elegant one that generalizes to
many different types of allocators and free list organizations. However, there is
a potential disadvantage. Requiring each block to contain both a header and a
footer can introduce significant memory overhead if an application manipulates

826 Chapter 9 Virtual Memory

m1 a

a
a

a
a

a

n

n

m2

m2

m1

m1 a

a
f

f
a

a

n

n

m2

m2

Case 1

m1

m1 a

a
a

a
f

f

n

n

m2

m2

m1

m1 a

a
f

f

n!m2

n!m2

m1

Case 2

m1 f

f
a

a
a

a

n

n

m2

m2

m1

n!m1 f

f
a

a

n!m1

m2

m2

Case 3

m1 f

f
a

a
f

f

n

n

m2

m2

m1

n!m1!m2 f

fn!m1!m2

Case 4

Figure 9.40 Coalescing with boundary tags. Case 1: prev and next allocated. Case 2: prev allocated, next
free. Case 3: prev free, next allocated. Case 4: next and prev free.

many small blocks. For example, if a graph application dynamically creates and
destroys graph nodes by making repeated calls tomalloc andfree, and each graph
node requires only a couple of words of memory, then the header and the footer
will consume half of each allocated block.

Fortunately, there is a clever optimization of boundary tags that eliminates
the need for a footer in allocated blocks. Recall that when we attempt to coalesce
the current block with the previous and next blocks in memory, the size field in
the footer of the previous block is only needed if the previous block is free. If we
were to store the allocated/free bit of the previous block in one of the excess low-
order bits of the current block, then allocated blocks would not need footers, and
we could use that extra space for payload. Note, however, that free blocks still
need footers.

Practice Problem 9.7
Determine the minimum block size for each of the following combinations of
alignment requirements and block formats. Assumptions: Implicit free list, zero-
sized payloads are not allowed, and headers and footers are stored in 4-byte words.

Section 9.9 Dynamic Memory Allocation 827

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer
Single word Header, but no footer Header and footer
Double word Header and footer Header and footer
Double word Header, but no footer Header and footer

9.9.12 Putting It Together: Implementing a Simple Allocator

Building an allocator is a challenging task. The design space is large, with nu-
merous alternatives for block format and free list format, as well as placement,
splitting, and coalescing policies. Another challenge is that you are often forced
to program outside the safe, familiar confines of the type system, relying on the
error-prone pointer casting and pointer arithmetic that is typical of low-level sys-
tems programming.

While allocators do not require enormous amounts of code, they are subtle
and unforgiving. Students familiar with higher-level languages such as C++ or Java
often hit a conceptual wall when they first encounter this style of programming. To
help you clear this hurdle, we will work through the implementation of a simple
allocator based on an implicit free list with immediate boundary-tag coalescing.
The maximum block size is 232 = 4 GB. The code is 64-bit clean, running without
modification in 32-bit (gcc -m32) or 64-bit (gcc -m64) processes.

General Allocator Design

Our allocator uses a model of the memory system provided by the memlib.c
package shown in Figure 9.41. The purpose of the model is to allow us to run
our allocator without interfering with the existing system-level malloc package.
The mem_init function models the virtual memory available to the heap as a
large, double-word aligned array of bytes. The bytes between mem_heap and mem_
brk represent allocated virtual memory. The bytes following mem_brk represent
unallocated virtual memory. The allocator requests additional heap memory by
calling the mem_sbrk function, which has the same interface as the system’s sbrk
function, as well as the same semantics, except that it rejects requests to shrink
the heap.

The allocator itself is contained in a source file (mm.c) that users can compile
and link into their applications. The allocator exports three functions to applica-
tion programs:

1 extern int mm_init(void);

2 extern void *mm_malloc (size_t size);

3 extern void mm_free (void *ptr);

The mm_init function initializes the allocator, returning 0 if successful and
−1 otherwise. The mm_malloc and mm_free functions have the same interfaces
and semantics as their system counterparts. The allocator uses the block format

828 Chapter 9 Virtual Memory

code/vm/malloc/memlib.c
1 /* Private global variables */

2 static char *mem_heap; /* Points to first byte of heap */

3 static char *mem_brk; /* Points to last byte of heap plus 1 */

4 static char *mem_max_addr; /* Max legal heap addr plus 1*/

5

6 /*

7 * mem_init - Initialize the memory system model

8 */

9 void mem_init(void)

10 {

11 mem_heap = (char *)Malloc(MAX_HEAP);

12 mem_brk = (char *)mem_heap;

13 mem_max_addr = (char *)(mem_heap + MAX_HEAP);

14 }

15

16 /*

17 * mem_sbrk - Simple model of the sbrk function. Extends the heap

18 * by incr bytes and returns the start address of the new area. In

19 * this model, the heap cannot be shrunk.

20 */

21 void *mem_sbrk(int incr)

22 {

23 char *old_brk = mem_brk;

24

25 if ((incr < 0) || ((mem_brk + incr) > mem_max_addr)) {

26 errno = ENOMEM;

27 fprintf(stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");

28 return (void *)-1;

29 }

30 mem_brk += incr;

31 return (void *)old_brk;

32 }

code/vm/malloc/memlib.c

Figure 9.41 memlib.c: Memory system model.

shown in Figure 9.39. The minimum block size is 16 bytes. The free list is organized
as an implicit free list, with the invariant form shown in Figure 9.42.

The first word is an unused padding word aligned to a double-word boundary.
The padding is followed by a special prologue block, which is an 8-byte allocated
block consisting of only a header and a footer. The prologue block is created
during initialization and is never freed. Following the prologue block are zero
or more regular blocks that are created by calls to malloc or free. The heap

Section 9.9 Dynamic Memory Allocation 829

Prologue
block

Regular
block 1

Regular
block 2

Start
of

heap
8/1 8/1 hdr hdrftr ftr

Regular
block n

Epilogue
block hdr

hdr ftr 0/1

static char *heap_listp

Double-
word

aligned
. . .

Figure 9.42 Invariant form of the implicit free list.

always ends with a special epilogue block, which is a zero-sized allocated block
that consists of only a header. The prologue and epilogue blocks are tricks that
eliminate the edge conditions during coalescing. The allocator uses a single private
(static) global variable (heap_listp) that always points to the prologue block.
(As a minor optimization, we could make it point to the next block instead of the
prologue block.)

Basic Constants and Macros for Manipulating the Free List

Figure 9.43 shows some basic constants and macros that we will use throughout
the allocator code. Lines 2–4 define some basic size constants: the sizes of words
(WSIZE) and double words (DSIZE), and the size of the initial free block and
the default size for expanding the heap (CHUNKSIZE).

Manipulating the headers and footers in the free list can be troublesome
because it demands extensive use of casting and pointer arithmetic. Thus, we find
it helpful to define a small set of macros for accessing and traversing the free list
(lines 9–25). The PACK macro (line 9) combines a size and an allocate bit and
returns a value that can be stored in a header or footer.

The GET macro (line 12) reads and returns the word referenced by argu-
ment p. The casting here is crucial. The argument p is typically a (void *) pointer,
which cannot be dereferenced directly. Similarly, the PUT macro (line 13) stores
val in the word pointed at by argument p.

The GET_SIZE and GET_ALLOC macros (lines 16–17) return the size and
allocated bit, respectively, from a header or footer at address p. The remaining
macros operate on block pointers (denoted bp) that point to the first payload
byte. Given a block pointer bp, the HDRP and FTRP macros (lines 20–21) return
pointers to the block header and footer, respectively. The NEXT_BLKP and
PREV_BLKP macros (lines 24–25) return the block pointers of the next and
previous blocks, respectively.

The macros can be composed in various ways to manipulate the free list. For
example, given a pointer bp to the current block, we could use the following line
of code to determine the size of the next block in memory:

size_t size = GET_SIZE(HDRP(NEXT_BLKP(bp)));

830 Chapter 9 Virtual Memory

code/vm/malloc/mm.c
1 /* Basic constants and macros */

2 #define WSIZE 4 /* Word and header/footer size (bytes) */

3 #define DSIZE 8 /* Double word size (bytes) */

4 #define CHUNKSIZE (1<<12) /* Extend heap by this amount (bytes) */

5

6 #define MAX(x, y) ((x) > (y)? (x) : (y))

7

8 /* Pack a size and allocated bit into a word */

9 #define PACK(size, alloc) ((size) | (alloc))

10

11 /* Read and write a word at address p */

12 #define GET(p) (*(unsigned int *)(p))

13 #define PUT(p, val) (*(unsigned int *)(p) = (val))

14

15 /* Read the size and allocated fields from address p */

16 #define GET_SIZE(p) (GET(p) & ~0x7)

17 #define GET_ALLOC(p) (GET(p) & 0x1)

18

19 /* Given block ptr bp, compute address of its header and footer */

20 #define HDRP(bp) ((char *)(bp) - WSIZE)

21 #define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

22

23 /* Given block ptr bp, compute address of next and previous blocks */

24 #define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) - WSIZE)))

25 #define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char *)(bp) - DSIZE)))

code/vm/malloc/mm.c

Figure 9.43 Basic constants and macros for manipulating the free list.

Creating the Initial Free List

Before calling mm_malloc or mm_free, the application must initialize the heap
by calling the mm_init function (Figure 9.44). The mm_init function gets four
words from the memory system and initializes them to create the empty free list
(lines 4–10). It then calls the extend_heap function (Figure 9.45), which extends
the heap by CHUNKSIZE bytes and creates the initial free block. At this point,
the allocator is initialized and ready to accept allocate and free requests from the
application.

The extend_heap function is invoked in two different circumstances: (1) when
the heap is initialized, and (2) when mm_malloc is unable to find a suitable fit. To
maintain alignment, extend_heap rounds up the requested size to the nearest
multiple of 2 words (8 bytes), and then requests the additional heap space from
the memory system (lines 7–9).

The remainder of the extend_heap function (lines 12–17) is somewhat subtle.
The heap begins on a double-word aligned boundary, and every call to extend_
heap returns a block whose size is an integral number of double words. Thus, every

Section 9.9 Dynamic Memory Allocation 831

code/vm/malloc/mm.c
1 int mm_init(void)

2 {

3 /* Create the initial empty heap */

4 if ((heap_listp = mem_sbrk(4*WSIZE)) == (void *)-1)

5 return -1;

6 PUT(heap_listp, 0); /* Alignment padding */

7 PUT(heap_listp + (1*WSIZE), PACK(DSIZE, 1)); /* Prologue header */

8 PUT(heap_listp + (2*WSIZE), PACK(DSIZE, 1)); /* Prologue footer */

9 PUT(heap_listp + (3*WSIZE), PACK(0, 1)); /* Epilogue header */

10 heap_listp += (2*WSIZE);

11

12 /* Extend the empty heap with a free block of CHUNKSIZE bytes */

13 if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

14 return -1;

15 return 0;

16 }

code/vm/malloc/mm.c

Figure 9.44 mm_init: Creates a heap with an initial free block.

code/vm/malloc/mm.c
1 static void *extend_heap(size_t words)

2 {

3 char *bp;

4 size_t size;

5

6 /* Allocate an even number of words to maintain alignment */

7 size = (words % 2) ? (words+1) * WSIZE : words * WSIZE;

8 if ((long)(bp = mem_sbrk(size)) == -1)

9 return NULL;

10

11 /* Initialize free block header/footer and the epilogue header */

12 PUT(HDRP(bp), PACK(size, 0)); /* Free block header */

13 PUT(FTRP(bp), PACK(size, 0)); /* Free block footer */

14 PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1)); /* New epilogue header */

15

16 /* Coalesce if the previous block was free */

17 return coalesce(bp);

18 }

code/vm/malloc/mm.c

Figure 9.45 extend_heap: Extends the heap with a new free block.

832 Chapter 9 Virtual Memory

call to mem_sbrk returns a double-word aligned chunk of memory immediately
following the header of the epilogue block. This header becomes the header of
the new free block (line 12), and the last word of the chunk becomes the new
epilogue block header (line 14). Finally, in the likely case that the previous heap
was terminated by a free block, we call the coalesce function to merge the two
free blocks and return the block pointer of the merged blocks (line 17).

Freeing and Coalescing Blocks

An application frees a previously allocated block by calling the mm_free function
(Figure 9.46), which frees the requested block (bp) and then merges adjacent free
blocks using the boundary-tags coalescing technique described in Section 9.9.11.

The code in the coalescehelper function is a straightforward implementation
of the four cases outlined in Figure 9.40. There is one somewhat subtle aspect. The
free list format we have chosen—with its prologue and epilogue blocks that are
always marked as allocated—allows us to ignore the potentially troublesome edge
conditions where the requested block bp is at the beginning or end of the heap.
Without these special blocks, the code would be messier, more error prone, and
slower, because we would have to check for these rare edge conditions on each
and every free request.

Allocating Blocks

An application requests a block of size bytes of memory by calling the mm_malloc
function (Figure 9.47). After checking for spurious requests, the allocator must
adjust the requested block size to allow room for the header and the footer, and to
satisfy the double-word alignment requirement. Lines 12–13 enforce the minimum
block size of 16 bytes: 8 bytes to satisfy the alignment requirement, and 8 more
for the overhead of the header and footer. For requests over 8 bytes (line 15),
the general rule is to add in the overhead bytes and then round up to the nearest
multiple of 8.

Once the allocator has adjusted the requested size, it searches the free list for a
suitable free block (line 18). If there is a fit, then the allocator places the requested
block and optionally splits the excess (line 19), and then returns the address of the
newly allocated block.

If the allocator cannot find a fit, it extends the heap with a new free block
(lines 24–26), places the requested block in the new free block, optionally splitting
the block (line 27), and then returns a pointer to the newly allocated block.

Practice Problem 9.8
Implement a find_fit function for the simple allocator described in Section
9.9.12.

static void *find_fit(size_t asize)

Your solution should perform a first-fit search of the implicit free list.

Section 9.9 Dynamic Memory Allocation 833

code/vm/malloc/mm.c
1 void mm_free(void *bp)

2 {

3 size_t size = GET_SIZE(HDRP(bp));

4

5 PUT(HDRP(bp), PACK(size, 0));

6 PUT(FTRP(bp), PACK(size, 0));

7 coalesce(bp);

8 }

9

10 static void *coalesce(void *bp)

11 {

12 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));

13 size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));

14 size_t size = GET_SIZE(HDRP(bp));

15

16 if (prev_alloc && next_alloc) { /* Case 1 */

17 return bp;

18 }

19

20 else if (prev_alloc && !next_alloc) { /* Case 2 */

21 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));

22 PUT(HDRP(bp), PACK(size, 0));

23 PUT(FTRP(bp), PACK(size,0));

24 }

25

26 else if (!prev_alloc && next_alloc) { /* Case 3 */

27 size += GET_SIZE(HDRP(PREV_BLKP(bp)));

28 PUT(FTRP(bp), PACK(size, 0));

29 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

30 bp = PREV_BLKP(bp);

31 }

32

33 else { /* Case 4 */

34 size += GET_SIZE(HDRP(PREV_BLKP(bp))) +

35 GET_SIZE(FTRP(NEXT_BLKP(bp)));

36 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

37 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));

38 bp = PREV_BLKP(bp);

39 }

40 return bp;

41 }

code/vm/malloc/mm.c

Figure 9.46 mm_free: Frees a block and uses boundary-tag coalescing to merge it
with any adjacent free blocks in constant time.

834 Chapter 9 Virtual Memory

code/vm/malloc/mm.c
1 void *mm_malloc(size_t size)

2 {

3 size_t asize; /* Adjusted block size */

4 size_t extendsize; /* Amount to extend heap if no fit */

5 char *bp;

6

7 /* Ignore spurious requests */

8 if (size == 0)

9 return NULL;

10

11 /* Adjust block size to include overhead and alignment reqs. */

12 if (size <= DSIZE)

13 asize = 2*DSIZE;

14 else

15 asize = DSIZE * ((size + (DSIZE) + (DSIZE-1)) / DSIZE);

16

17 /* Search the free list for a fit */

18 if ((bp = find_fit(asize)) != NULL) {

19 place(bp, asize);

20 return bp;

21 }

22

23 /* No fit found. Get more memory and place the block */

24 extendsize = MAX(asize,CHUNKSIZE);

25 if ((bp = extend_heap(extendsize/WSIZE)) == NULL)

26 return NULL;

27 place(bp, asize);

28 return bp;

29 }

code/vm/malloc/mm.c

Figure 9.47 mm_malloc: Allocates a block from the free list.

Practice Problem 9.9
Implement a place function for the example allocator.

static void place(void *bp, size_t asize)

Your solution should place the requested block at the beginning of the free block,
splitting only if the size of the remainder would equal or exceed the minimum
block size.

Section 9.9 Dynamic Memory Allocation 835

Block size

Payload

(a) Allocated block

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Footer

Block size

pred (Predecessor)

(b) Free block

succ (Successor)

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Old payload

Footer

Figure 9.48 Format of heap blocks that use doubly linked free lists.

9.9.13 Explicit Free Lists

The implicit free list provides us with a simple way to introduce some basic
allocator concepts. However, because block allocation time is linear in the total
number of heap blocks, the implicit free list is not appropriate for a general-
purpose allocator (although it might be fine for a special-purpose allocator where
the number of heap blocks is known beforehand to be small).

A better approach is to organize the free blocks into some form of explicit
data structure. Since by definition the body of a free block is not needed by the
program, the pointers that implement the data structure can be stored within the
bodies of the free blocks. For example, the heap can be organized as a doubly
linked free list by including a pred (predecessor) and succ (successor) pointer in
each free block, as shown in Figure 9.48.

Using a doubly linked list instead of an implicit free list reduces the first fit
allocation time from linear in the total number of blocks to linear in the number
of free blocks. However, the time to free a block can be either linear or constant,
depending on the policy we choose for ordering the blocks in the free list.

One approach is to maintain the list in last-in first-out (LIFO) order by insert-
ing newly freed blocks at the beginning of the list. With a LIFO ordering and a
first fit placement policy, the allocator inspects the most recently used blocks first.
In this case, freeing a block can be performed in constant time. If boundary tags
are used, then coalescing can also be performed in constant time.

Another approach is to maintain the list in address order, where the address
of each block in the list is less than the address of its successor. In this case, freeing
a block requires a linear-time search to locate the appropriate predecessor. The
trade-off is that address-ordered first fit enjoys better memory utilization than
LIFO-ordered first fit, approaching the utilization of best fit.

A disadvantage of explicit lists in general is that free blocks must be large
enough to contain all of the necessary pointers, as well as the header and possibly
a footer. This results in a larger minimum block size, and increases the potential
for internal fragmentation.

836 Chapter 9 Virtual Memory

9.9.14 Segregated Free Lists

As we have seen, an allocator that uses a single linked list of free blocks requires
time linear in the number of free blocks to allocate a block. A popular approach for
reducing the allocation time, known generally as segregated storage, is to maintain
multiple free lists, where each list holds blocks that are roughly the same size. The
general idea is to partition the set of all possible block sizes into equivalence classes
called size classes. There are many ways to define the size classes. For example, we
might partition the block sizes by powers of two:

{1}, {2}, {3, 4}, {5−8}, . . . , {1025−2048}, {2049−4096}, {4097−∞}

Or we might assign small blocks to their own size classes and partition large blocks
by powers of two:

{1}, {2}, {3}, . . . , {1023}, {1024}, {1025−2048}, {2049 − 4096}, {4097−∞}

The allocator maintains an array of free lists, with one free list per size class,
ordered by increasing size. When the allocator needs a block of size n, it searches
the appropriate free list. If it cannot find a block that fits, it searches the next list,
and so on.

The dynamic storage allocation literature describes dozens of variants of seg-
regated storage that differ in how they define size classes, when they perform
coalescing, when they request additional heap memory from the operating sys-
tem, whether they allow splitting, and so forth. To give you a sense of what is
possible, we will describe two of the basic approaches: simple segregated storage
and segregated fits.

Simple Segregated Storage

With simple segregated storage, the free list for each size class contains same-sized
blocks, each the size of the largest element of the size class. For example, if some
size class is defined as {17−32}, then the free list for that class consists entirely of
blocks of size 32.

To allocate a block of some given size, we check the appropriate free list. If the
list is not empty, we simply allocate the first block in its entirety. Free blocks are
never split to satisfy allocation requests. If the list is empty, the allocator requests
a fixed-sized chunk of additional memory from the operating system (typically
a multiple of the page size), divides the chunk into equal-sized blocks, and links
the blocks together to form the new free list. To free a block, the allocator simply
inserts the block at the front of the appropriate free list.

There are a number of advantages to this simple scheme. Allocating and
freeing blocks are both fast constant-time operations. Further, the combination
of the same-sized blocks in each chunk, no splitting, and no coalescing means that
there is very little per-block memory overhead. Since each chunk has only same-
sized blocks, the size of an allocated block can be inferred from its address. Since
there is no coalescing, allocated blocks do not need an allocated/free flag in the
header. Thus, allocated blocks require no headers, and since there is no coalescing,

Section 9.9 Dynamic Memory Allocation 837

they do not require any footers either. Since allocate and free operations insert
and delete blocks at the beginning of the free list, the list need only be singly
linked instead of doubly linked. The bottom line is that the only required field in
any block is a one-word succ pointer in each free block, and thus the minimum
block size is only one word.

A significant disadvantage is that simple segregated storage is susceptible to
internal and external fragmentation. Internal fragmentation is possible because
free blocks are never split. Worse, certain reference patterns can cause extreme
external fragmentation because free blocks are never coalesced (Problem 9.10).

Practice Problem 9.10
Describe a reference pattern that results in severe external fragmentation in an
allocator based on simple segregated storage.

Segregated Fits

With this approach, the allocator maintains an array of free lists. Each free list is
associated with a size class and is organized as some kind of explicit or implicit
list. Each list contains potentially different-sized blocks whose sizes are members
of the size class. There are many variants of segregated fits allocators. Here we
describe a simple version.

To allocate a block, we determine the size class of the request and do a first-
fit search of the appropriate free list for a block that fits. If we find one, then we
(optionally) split it and insert the fragment in the appropriate free list. If we cannot
find a block that fits, then we search the free list for the next larger size class. We
repeat until we find a block that fits. If none of the free lists yields a block that fits,
then we request additional heap memory from the operating system, allocate the
block out of this new heap memory, and place the remainder in the appropriate
size class. To free a block, we coalesce and place the result on the appropriate free
list.

The segregated fits approach is a popular choice with production-quality
allocators such as the GNU malloc package provided in the C standard library
because it is both fast and memory efficient. Search times are reduced because
searches are limited to particular parts of the heap instead of the entire heap.
Memory utilization can improve because of the interesting fact that a simple first-
fit search of a segregated free list approximates a best-fit search of the entire heap.

Buddy Systems

A buddy system is a special case of segregated fits where each size class is a power
of two. The basic idea is that given a heap of 2m words, we maintain a separate free
list for each block size 2k, where 0 ≤ k ≤ m. Requested block sizes are rounded up
to the nearest power of two. Originally, there is one free block of size 2m words.

To allocate a block of size 2k, we find the first available block of size 2j , such
that k ≤ j ≤ m. If j = k, then we are done. Otherwise, we recursively split the

838 Chapter 9 Virtual Memory

block in half until j = k. As we perform this splitting, each remaining half (known
as a buddy) is placed on the appropriate free list. To free a block of size 2k, we
continue coalescing with the free. When we encounter an allocated buddy, we stop
the coalescing.

A key fact about buddy systems is that given the address and size of a block,
it is easy to compute the address of its buddy. For example, a block of size 32 byes
with address

xxx...x00000

has its buddy at address

xxx...x10000

In other words, the addresses of a block and its buddy differ in exactly one bit
position.

The major advantage of a buddy system allocator is its fast searching and
coalescing. The major disadvantage is that the power-of-two requirement on the
block size can cause significant internal fragmentation. For this reason, buddy
system allocators are not appropriate for general-purpose workloads. However,
for certain application-specific workloads, where the block sizes are known in
advance to be powers of two, buddy system allocators have a certain appeal.

9.10 Garbage Collection

With an explicit allocator such as the C malloc package, an application allocates
and frees heap blocks by making calls to malloc and free. It is the application’s
responsibility to free any allocated blocks that it no longer needs.

Failing to free allocated blocks is a common programming error. For example,
consider the following C function that allocates a block of temporary storage as
part of its processing:

1 void garbage()

2 {

3 int *p = (int *)Malloc(15213);

4

5 return; /* Array p is garbage at this point */

6 }

Since p is no longer needed by the program, it should have been freed before
garbage returned. Unfortunately, the programmer has forgotten to free the block.
It remains allocated for the lifetime of the program, needlessly occupying heap
space that could be used to satisfy subsequent allocation requests.

A garbage collector is a dynamic storage allocator that automatically frees al-
located blocks that are no longer needed by the program. Such blocks are known
as garbage (hence the term garbage collector). The process of automatically re-
claiming heap storage is known as garbage collection. In a system that supports

Section 9.10 Garbage Collection 839

garbage collection, applications explicitly allocate heap blocks but never explic-
itly free them. In the context of a C program, the application calls malloc, but
never calls free. Instead, the garbage collector periodically identifies the garbage
blocks and makes the appropriate calls to free to place those blocks back on the
free list.

Garbage collection dates back to Lisp systems developed by John McCarthy
at MIT in the early 1960s. It is an important part of modern language systems such
as Java, ML, Perl, and Mathematica, and it remains an active and important area of
research. The literature describes an amazing number of approaches for garbage
collection. We will limit our discussion to McCarthy’s original Mark&Sweep al-
gorithm, which is interesting because it can be built on top of an existing malloc
package to provide garbage collection for C and C++ programs.

9.10.1 Garbage Collector Basics

A garbage collector views memory as a directed reachability graph of the form
shown in Figure 9.49. The nodes of the graph are partitioned into a set of root
nodes and a set of heap nodes. Each heap node corresponds to an allocated block
in the heap. A directed edge p → q means that some location in block p points to
some location in block q. Root nodes correspond to locations not in the heap that
contain pointers into the heap. These locations can be registers, variables on the
stack, or global variables in the read-write data area of virtual memory.

We say that a node p is reachable if there exists a directed path from any root
node to p. At any point in time, the unreachable nodes correspond to garbage that
can never be used again by the application. The role of a garbage collector is to
maintain some representation of the reachability graph and periodically reclaim
the unreachable nodes by freeing them and returning them to the free list.

Garbage collectors for languages like ML and Java, which exert tight con-
trol over how applications create and use pointers, can maintain an exact repre-
sentation of the reachability graph, and thus can reclaim all garbage. However,
collectors for languages like C and C++ cannot in general maintain exact repre-
sentations of the reachability graph. Such collectors are known as conservative
garbage collectors. They are conservative in the sense that each reachable block

Root nodes

Heap nodes

Reachable

Unreachable
(garbage)

Figure 9.49 A garbage collector’s view of memory as a directed graph.

840 Chapter 9 Virtual Memory

C application
program malloc()

Conservative
garbage
collector

free()

Dynamic storage allocator

Figure 9.50 Integrating a conservative garbage collector and a C malloc package.

is correctly identified as reachable, while some unreachable nodes might be incor-
rectly identified as reachable.

Collectors can provide their service on demand, or they can run as separate
threads in parallel with the application, continuously updating the reachability
graph and reclaiming garbage. For example, consider how we might incorporate a
conservative collector for C programs into an existing malloc package, as shown
in Figure 9.50.

The application calls malloc in the usual manner whenever it needs heap
space. If malloc is unable to find a free block that fits, then it calls the garbage col-
lector in hopes of reclaiming some garbage to the free list. The collector identifies
the garbage blocks and returns them to the heap by calling the free function. The
key idea is that the collector calls free instead of the application. When the call
to the collector returns, malloc tries again to find a free block that fits. If that fails,
then it can ask the operating system for additional memory. Eventually malloc
returns a pointer to the requested block (if successful) or the NULL pointer (if
unsuccessful).

9.10.2 Mark&Sweep Garbage Collectors

A Mark&Sweep garbage collector consists of a mark phase, which marks all
reachable and allocated descendants of the root nodes, followed by a sweep phase,
which frees each unmarked allocated block. Typically, one of the spare low-order
bits in the block header is used to indicate whether a block is marked or not.

Our description of Mark&Sweep will assume the following functions, where
ptr is defined as typedef void *ptr.

. ptr isPtr(ptr p): If p points to some word in an allocated block, returns a
pointer b to the beginning of that block. Returns NULL otherwise.

. int blockMarked(ptr b): Returns true if block b is already marked.

. int blockAllocated(ptr b): Returns true if block b is allocated.

. void markBlock(ptr b): Marks block b.

. int length(ptr b): Returns the length in words (excluding the header) of
block b.

. void unmarkBlock(ptr b): Changes the status of block b from marked to
unmarked.

. ptr nextBlock(ptr b): Returns the successor of block b in the heap.

Section 9.10 Garbage Collection 841

(a) mark function

void mark(ptr p) {

if ((b = isPtr(p)) == NULL)

return;

if (blockMarked(b))

return;

markBlock(b);

len = length(b);

for (i=0; i < len; i++)

mark(b[i]);

return;

}

(b) sweep function

void sweep(ptr b, ptr end) {

while (b < end) {

if (blockMarked(b))

unmarkBlock(b);

else if (blockAllocated(b))

free(b);

b = nextBlock(b);

}

return;

}

Figure 9.51 Pseudo-code for the mark and sweep functions.

The mark phase calls the mark function shown in Figure 9.51(a) once for each root
node. The mark function returns immediately if p does not point to an allocated
and unmarked heap block. Otherwise, it marks the block and calls itself recursively
on each word in block. Each call to the mark function marks any unmarked and
reachable descendants of some root node. At the end of the mark phase, any
allocated block that is not marked is guaranteed to be unreachable and, hence,
garbage that can be reclaimed in the sweep phase.

The sweep phase is a single call to the sweep function shown in Figure 9.51(b).
The sweep function iterates over each block in the heap, freeing any unmarked
allocated blocks (i.e., garbage) that it encounters.

Figure 9.52 shows a graphical interpretation of Mark&Sweep for a small heap.
Block boundaries are indicated by heavy lines. Each square corresponds to a
word of memory. Each block has a one-word header, which is either marked or
unmarked.

1 2 3 4 5 6

Before mark:

Root

After mark:

Unmarked block
header

Marked block
header

After sweep: FreeFree

Figure 9.52 Mark and sweep example. Note that the arrows in this example denote
memory references, and not free list pointers.

842 Chapter 9 Virtual Memory

Initially, the heap in Figure 9.52 consists of six allocated blocks, each of which
is unmarked. Block 3 contains a pointer to block 1. Block 4 contains pointers
to blocks 3 and 6. The root points to block 4. After the mark phase, blocks 1,
3, 4, and 6 are marked because they are reachable from the root. Blocks 2 and
5 are unmarked because they are unreachable. After the sweep phase, the two
unreachable blocks are reclaimed to the free list.

9.10.3 Conservative Mark&Sweep for C Programs

Mark&Sweep is an appropriate approach for garbage collecting C programs be-
cause it works in place without moving any blocks. However, the C language poses
some interesting challenges for the implementation of the isPtr function.

First, C does not tag memory locations with any type information. Thus, there
is no obvious way for isPtr to determine if its input parameter p is a pointer or not.
Second, even if we were to know that p was a pointer, there would be no obvious
way for isPtr to determine whether p points to some location in the payload of
an allocated block.

One solution to the latter problem is to maintain the set of allocated blocks
as a balanced binary tree that maintains the invariant that all blocks in the left
subtree are located at smaller addresses and all blocks in the right subtree are
located in larger addresses. As shown in Figure 9.53, this requires two additional
fields (left and right) in the header of each allocated block. Each field points to
the header of some allocated block.

The isPtr(ptr p) function uses the tree to perform a binary search of the
allocated blocks. At each step, it relies on the size field in the block header to
determine if p falls within the extent of the block.

The balanced tree approach is correct in the sense that it is guaranteed to mark
all of the nodes that are reachable from the roots. This is a necessary guarantee,
as application users would certainly not appreciate having their allocated blocks
prematurely returned to the free list. However, it is conservative in the sense that
it may incorrectly mark blocks that are actually unreachable, and thus it may fail
to free some garbage. While this does not affect the correctness of application
programs, it can result in unnecessary external fragmentation.

The fundamental reason that Mark&Sweep collectors for C programs must
be conservative is that the C language does not tag memory locations with type
information. Thus, scalars like ints or floats can masquerade as pointers. For
example, suppose that some reachable allocated block contains an int in its
payload whose value happens to correspond to an address in the payload of some
other allocated block b. There is no way for the collector to infer that the data is
really an int and not a pointer. Therefore, the allocator must conservatively mark
block b as reachable, when in fact it might not be.

Figure 9.53
Left and right pointers
in a balanced tree of
allocated blocks.

Size Left Right Remainder of block

Allocated block header

! "

Section 9.11 Common Memory-Related Bugs in C Programs 843

9.11 Common Memory-Related Bugs in C Programs

Managing and using virtual memory can be a difficult and error-prone task for C
programmers. Memory-related bugs are among the most frightening because they
often manifest themselves at a distance, in both time and space, from the source of
the bug. Write the wrong data to the wrong location, and your program can run for
hours before it finally fails in some distant part of the program. We conclude our
discussion of virtual memory with a discussion of some of the common memory-
related bugs.

9.11.1 Dereferencing Bad Pointers

As we learned in Section 9.7.2, there are large holes in the virtual address space of a
process that are not mapped to any meaningful data. If we attempt to dereference
a pointer into one of these holes, the operating system will terminate our program
with a segmentation exception. Also, some areas of virtual memory are read-only.
Attempting to write to one of these areas terminates the program with a protection
exception.

A common example of dereferencing a bad pointer is the classic scanf bug.
Suppose we want to use scanf to read an integer from stdin into a variable.
The correct way to do this is to pass scanf a format string and the address of the
variable:

scanf("%d", &val)

However, it is easy for new C programmers (and experienced ones too!) to pass
the contents of val instead of its address:

scanf("%d", val)

In this case, scanf will interpret the contents of val as an address and attempt to
write a word to that location. In the best case, the program terminates immediately
with an exception. In the worst case, the contents of val correspond to some
valid read/write area of virtual memory, and we overwrite memory, usually with
disastrous and baffling consequences much later.

9.11.2 Reading Uninitialized Memory

While bss memory locations (such as uninitialized global C variables) are always
initialized to zeros by the loader, this is not true for heap memory. A common
error is to assume that heap memory is initialized to zero:

1 /* Return y = Ax */

2 int *matvec(int **A, int *x, int n)

3 {

4 int i, j;

5

6 int *y = (int *)Malloc(n * sizeof(int));

7

844 Chapter 9 Virtual Memory

8 for (i = 0; i < n; i++)

9 for (j = 0; j < n; j++)

10 y[i] += A[i][j] * x[j];

11 return y;

12 }

In this example, the programmer has incorrectly assumed that vector y has been
initialized to zero. A correct implementation would explicitly zero y[i], or use
calloc.

9.11.3 Allowing Stack Buffer Overflows

As we saw in Section 3.12, a program has a buffer overflow bug if it writes to a target
buffer on the stack without examining the size of the input string. For example,
the following function has a buffer overflow bug because the gets function copies
an arbitrary length string to the buffer. To fix this, we would need to use the fgets
function, which limits the size of the input string.

1 void bufoverflow()

2 {

3 char buf[64];

4

5 gets(buf); /* Here is the stack buffer overflow bug */

6 return;

7 }

9.11.4 Assuming that Pointers and the Objects They Point to Are the
Same Size

One common mistake is to assume that pointers to objects are the same size as
the objects they point to:

1 /* Create an nxm array */

2 int **makeArray1(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int));

6

7 for (i = 0; i < n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

The intent here is to create an array of n pointers, each of which points to an array
of m ints. However, because the programmer has written sizeof(int) instead
of sizeof(int *) in line 5, the code actually creates an array of ints.

This code will run fine on machines where ints and pointers to ints are the
same size. But if we run this code on a machine like the Core i7, where a pointer is

Section 9.11 Common Memory-Related Bugs in C Programs 845

larger than an int, then the loop in lines 7–8 will write past the end of the A array.
Since one of these words will likely be the boundary tag footer of the allocated
block, we may not discover the error until we free the block much later in the
program, at which point the coalescing code in the allocator will fail dramatically
and for no apparent reason. This is an insidious example of the kind of “action at
a distance” that is so typical of memory-related programming bugs.

9.11.5 Making Off-by-One Errors

Off-by-one errors are another common source of overwriting bugs:

1 /* Create an nxm array */

2 int **makeArray2(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int *));

6

7 for (i = 0; i <= n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

This is another version of the program in the previous section. Here we have
created an n-element array of pointers in line 5, but then tried to initialize n + 1 of
its elements in lines 7 and 8, in the process overwriting some memory that follows
the A array.

9.11.6 Referencing a Pointer Instead of the Object It Points to

If we are not careful about the precedence and associativity of C operators, then
we incorrectly manipulate a pointer instead of the object it points to. For example,
consider the following function, whose purpose is to remove the first item in a
binary heap of *size items, and then reheapify the remaining *size - 1 items:

1 int *binheapDelete(int **binheap, int *size)

2 {

3 int *packet = binheap[0];

4

5 binheap[0] = binheap[*size - 1];

6 *size--; /* This should be (*size)-- */

7 heapify(binheap, *size, 0);

8 return(packet);

9 }

In line 6, the intent is to decrement the integer value pointed to by thesizepointer.
However, because the unary -- and * operators have the same precedence and
associate from right to left, the code in line 6 actually decrements the pointer

846 Chapter 9 Virtual Memory

itself instead of the integer value that it points to. If we are lucky, the program will
crash immediately; but more likely we will be left scratching our heads when the
program produces an incorrect answer much later in its execution. The moral here
is to use parentheses whenever in doubt about precedence and associativity. For
example, in line 6 we should have clearly stated our intent by using the expression
(*size)--.

9.11.7 Misunderstanding Pointer Arithmetic

Another common mistake is to forget that arithmetic operations on pointers are
performed in units that are the size of the objects they point to, which are not
necessarily bytes. For example, the intent of the following function is to scan an
array of ints and return a pointer to the first occurrence of val:

1 int *search(int *p, int val)

2 {

3 while (*p && *p != val)

4 p += sizeof(int); /* Should be p++ */

5 return p;

6 }

However, because line 4 increments the pointer by 4 (the number of bytes in an
integer) each time through the loop, the function incorrectly scans every fourth
integer in the array.

9.11.8 Referencing Nonexistent Variables

Naive C programmers who do not understand the stack discipline will sometimes
reference local variables that are no longer valid, as in the following example:

1 int *stackref ()

2 {

3 int val;

4

5 return &val;

6 }

This function returns a pointer (say, p) to a local variable on the stack and then
pops its stack frame. Although p still points to a valid memory address, it no longer
points to a valid variable. When other functions are called later in the program, the
memory will be reused for their stack frames. Later, if the program assigns some
value to *p, then it might actually be modifying an entry in another function’s
stack frame, with potentially disastrous and baffling consequences.

Section 9.11 Common Memory-Related Bugs in C Programs 847

9.11.9 Referencing Data in Free Heap Blocks

A similar error is to reference data in heap blocks that have already been freed.
For example, consider the following example, which allocates an integer array x in
line 6, prematurely frees block x in line 10, and then later references it in line 14:

1 int *heapref(int n, int m)

2 {

3 int i;

4 int *x, *y;

5

6 x = (int *)Malloc(n * sizeof(int));

7

8 /* ... */ /* Other calls to malloc and free go here */

9

10 free(x);

11

12 y = (int *)Malloc(m * sizeof(int));

13 for (i = 0; i < m; i++)

14 y[i] = x[i]++; /* Oops! x[i] is a word in a free block */

15

16 return y;

17 }

Depending on the pattern of malloc and free calls that occur between lines 6
and 10, when the program references x[i] in line 14, the array x might be part
of some other allocated heap block and have been overwritten. As with many
memory-related bugs, the error will only become evident later in the program
when we notice that the values in y are corrupted.

9.11.10 Introducing Memory Leaks

Memory leaks are slow, silent killers that occur when programmers inadvertently
create garbage in the heap by forgetting to free allocated blocks. For example, the
following function allocates a heap block x and then returns without freeing it:

1 void leak(int n)

2 {

3 int *x = (int *)Malloc(n * sizeof(int));

4

5 return; /* x is garbage at this point */

6 }

If leak is called frequently, then the heap will gradually fill up with garbage,
in the worst case consuming the entire virtual address space. Memory leaks are
particularly serious for programs such as daemons and servers, which by definition
never terminate.

848 Chapter 9 Virtual Memory

9.12 Summary

Virtual memory is an abstraction of main memory. Processors that support virtual
memory reference main memory using a form of indirection known as virtual ad-
dressing. The processor generates a virtual address, which is translated into a phys-
ical address before being sent to the main memory. The translation of addresses
from a virtual address space to a physical address space requires close cooperation
between hardware and software. Dedicated hardware translates virtual addresses
using page tables whose contents are supplied by the operating system.

Virtual memory provides three important capabilities. First, it automatically
caches recently used contents of the virtual address space stored on disk in main
memory. The block in a virtual memory cache is known as a page. A reference
to a page on disk triggers a page fault that transfers control to a fault handler
in the operating system. The fault handler copies the page from disk to the main
memory cache, writing back the evicted page if necessary. Second, virtual memory
simplifies memory management, which in turn simplifies linking, sharing data
between processes, the allocation of memory for processes, and program loading.
Finally, virtual memory simplifies memory protection by incorporating protection
bits into every page table entry.

The process of address translation must be integrated with the operation of
any hardware caches in the system. Most page table entries are located in the L1
cache, but the cost of accessing page table entries from L1 is usually eliminated
by an on-chip cache of page table entries called a TLB.

Modern systems initialize chunks of virtual memory by associating them with
chunks of files on disk, a process known as memory mapping. Memory mapping
provides an efficient mechanism for sharing data, creating new processes, and
loading programs. Applications can manually create and delete areas of the virtual
address space using the mmap function. However, most programs rely on a dynamic
memory allocator such as malloc, which manages memory in an area of the virtual
address space called the heap. Dynamic memory allocators are application-level
programs with a system-level feel, directly manipulating memory without much
help from the type system. Allocators come in two flavors. Explicit allocators
require applications to explicitly free their memory blocks. Implicit allocators
(garbage collectors) free any unused and unreachable blocks automatically.

Managing and using memory is a difficult and error-prone task for C program-
mers. Examples of common errors include dereferencing bad pointers, reading
uninitialized memory, allowing stack buffer overflows, assuming that pointers and
the objects they point to are the same size, referencing a pointer instead of the
object it points to, misunderstanding pointer arithmetic, referencing nonexistent
variables, and introducing memory leaks.

Bibliographic Notes

Kilburn and his colleagues published the first description of virtual memory [60].
Architecture texts contain additional details about the hardware’s role in virtual
memory [49]. Operating systems texts contain additional information about the
operating system’s role [98, 104, 112]. Bovet and Cesati [11] give a detailed de-

Homework Problems 849

scription of the Linux virtual memory system. Intel Corporation provides detailed
documentation on 32-bit and 64-bit address translation on IA processors [30].

Knuth wrote the classic work on storage allocation in 1968 [61]. Since that
time there has been a tremendous amount of work in the area. Wilson, Johnstone,
Neely, and Boles have written a beautiful survey and performance evaluation of
explicit allocators [117]. The general comments in this book about the throughput
and utilization of different allocator strategies are paraphrased from their sur-
vey. Jones and Lins provide a comprehensive survey of garbage collection [54].
Kernighan and Ritchie [58] show the complete code for a simple allocator based
on an explicit free list with a block size and successor pointer in each free block.
The code is interesting in that it uses unions to eliminate a lot of the complicated
pointer arithmetic, but at the expense of a linear-time (rather than constant-time)
free operation.

Homework Problems

9.11 ◆
In the following series of problems, you are to show how the example memory
system in Section 9.6.4 translates a virtual address into a physical address and
accesses the cache. For the given virtual address, indicate the TLB entry accessed,
the physical address, and the cache byte value returned. Indicate whether the TLB
misses, whether a page fault occurs, and whether a cache miss occurs. If there is
a cache miss, enter “–” for “Cache Byte returned.” If there is a page fault, enter
“–” for “PPN” and leave parts C and D blank.

Virtual address: 0x027c

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

850 Chapter 9 Virtual Memory

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.12 ◆
Repeat Problem 9.11 for the following address:

Virtual address: 0x03a9

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

Homework Problems 851

9.13 ◆
Repeat Problem 9.11 for the following address:

Virtual address: 0x0040

A. Virtual address format

13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format

11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

9.14 ◆◆
Given an input file hello.txt that consists of the string “Hello, world!\n”, write
a C program that uses mmap to change the contents of hello.txt to “Jello,
world!\n”.

9.15 ◆
Determine the block sizes and header values that would result from the following
sequence of malloc requests. Assumptions: (1) The allocator maintains double-
word alignment, and uses an implicit free list with the block format from Fig-
ure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes.

852 Chapter 9 Virtual Memory

Request Block size (decimal bytes) Block header (hex)

malloc(3)

malloc(11)

malloc(20)

malloc(21)

9.16 ◆
Determine the minimum block size for each of the following combinations of
alignment requirements and block formats. Assumptions: Explicit free list, 4-byte
pred and succ pointers in each free block, zero-sized payloads are not allowed,
and headers and footers are stored in 4-byte words.

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer
Single word Header, but no footer Header and footer
Double word Header and footer Header and footer
Double word Header, but no footer Header and footer

9.17 ◆◆◆
Develop a version of the allocator in Section 9.9.12 that performs a next-fit search
instead of a first-fit search.

9.18 ◆◆◆
The allocator in Section 9.9.12 requires both a header and a footer for each block
in order to perform constant-time coalescing. Modify the allocator so that free
blocks require a header and footer, but allocated blocks require only a header.

9.19 ◆
You are given three groups of statements relating to memory management and
garbage collection below. In each group, only one statement is true. Your task is
to indicate which statement is true.

1. (a) In a buddy system, up to 50% of the space can be wasted due to internal
fragmentation.

(b) The first-fit memory allocation algorithm is slower than the best-fit algo-
rithm (on average).

(c) Deallocation using boundary tags is fast only when the list of free blocks
is ordered according to increasing memory addresses.

(d) The buddy system suffers from internal fragmentation, but not from
external fragmentation.

2. (a) Using the first-fit algorithm on a free list that is ordered according to
decreasing block sizes results in low performance for allocations, but
avoids external fragmentation.

(b) For the best-fit method, the list of free blocks should be ordered according
to increasing memory addresses.

(c) The best-fit method chooses the largest free block into which the re-
quested segment fits.

Solutions to Practice Problems 853

(d) Using the first-fit algorithm on a free list that is ordered according to
increasing block sizes is equivalent to using the best-fit algorithm.

3. Mark & sweep garbage collectors are called conservative if:
(a) They coalesce freed memory only when a memory request cannot be

satisfied.
(b) They treat everything that looks like a pointer as a pointer.
(c) They perform garbage collection only when they run out of memory.
(d) They do not free memory blocks forming a cyclic list.

9.20 ◆◆◆◆
Write your own version of malloc and free, and compare its running time and
space utilization to the version of malloc provided in the standard C library.

Solutions to Practice Problems

Solution to Problem 9.1 (page 779)
This problem gives you some appreciation for the sizes of different address spaces.
At one point in time, a 32-bit address space seemed impossibly large. But now
there are database and scientific applications that need more, and you can expect
this trend to continue. At some point in your lifetime, expect to find yourself
complaining about the cramped 64-bit address space on your personal computer!

No. virtual address bits (n) No. virtual addresses (N) Largest possible virtual address

8 28 = 256 28 − 1 = 255
16 216 = 64K 216 − 1 = 64K − 1
32 232 = 4G 232 − 1 = 4G − 1
48 248 = 256T 248 = 256T − 1
64 264 = 16, 384P 264 − 1 = 16, 384P − 1

Solution to Problem 9.2 (page 781)
Since each virtual page is P = 2p bytes, there are a total of 2n/2p = 2n−p possible
pages in the system, each of which needs a page table entry (PTE).

n P = 2p # PTEs

16 4K 16
16 8K 8
32 4K 1M
32 8K 512K

Solution to Problem 9.3 (page 790)
You need to understand this kind of problem well in order to fully grasp address
translation. Here is how to solve the first subproblem: We are given n = 32 virtual
address bits and m = 24 physical address bits. A page size of P = 1 KB means we
need log2(1 K) = 10 bits for both the VPO and PPO. (Recall that the VPO and
PPO are identical.) The remaining address bits are the VPN and PPN, respectively.

854 Chapter 9 Virtual Memory

P # VPN bits # VPO bits # PPN bits # PPO bits

1 KB 22 10 14 10
2 KB 21 11 13 11
4 KB 20 12 12 12
8 KB 19 13 11 13

Solution to Problem 9.4 (page 798)
Doing a few of these manual simulations is a great way to firm up your under-
standing of address translation. You might find it helpful to write out all the bits
in the addresses, and then draw boxes around the different bit fields, such as VPN,
TLBI, etc. In this particular problem, there are no misses of any kind: the TLB
has a copy of the PTE and the cache has a copy of the requested data words. See
Problems 9.11, 9.12, and 9.13 for some different combinations of hits and misses.

A. 00 0011 1101 0111

B. Parameter Value

VPN 0xf

TLB index 0x3

TLB tag 0x3

TLB hit? (Y/N) Y
Page fault? (Y/N) N
PPN 0xd

C. 0011 0101 0111

D. Parameter Value

Byte offset 0x3

Cache index 0x5

Cache tag 0xd

Cache hit? (Y/N) Y
Cache byte returned 0x1d

Solution to Problem 9.5 (page 812)
Solving this problem will give you a good feel for the idea of memory mapping.
Try it yourself. We haven’t discussed the open, fstat, or write functions, so you’ll
need to read their man pages to see how they work.

code/vm/mmapcopy.c
1 #include "csapp.h"

2

3 /*

4 * mmapcopy - uses mmap to copy file fd to stdout

5 */

6 void mmapcopy(int fd, int size)

7 {

8 char *bufp; /* Pointer to memory mapped VM area */

Solutions to Practice Problems 855

9

10 bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);

11 Write(1, bufp, size);

12 return;

13 }

14

15 /* mmapcopy driver */

16 int main(int argc, char **argv)

17 {

18 struct stat stat;

19 int fd;

20

21 /* Check for required command line argument */

22 if (argc != 2) {

23 printf("usage: %s <filename>\n", argv[0]);

24 exit(0);

25 }

26

27 /* Copy the input argument to stdout */

28 fd = Open(argv[1], O_RDONLY, 0);

29 fstat(fd, &stat);

30 mmapcopy(fd, stat.st_size);

31 exit(0);

32 }

code/vm/mmapcopy.c

Solution to Problem 9.6 (page 822)
This problem touches on some core ideas such as alignment requirements, min-
imum block sizes, and header encodings. The general approach for determining
the block size is to round the sum of the requested payload and the header size
to the nearest multiple of the alignment requirement (in this case 8 bytes). For
example, the block size for the malloc(1) request is 4 + 1 = 5 rounded up to 8.
The block size for the malloc(13) request is 13 + 4 = 17 rounded up to 24.

Request Block size (decimal bytes) Block header (hex)

malloc(1) 8 0x9

malloc(5) 16 0x11

malloc(12) 16 0x11

malloc(13) 24 0x19

Solution to Problem 9.7 (page 826)
The minimum block size can have a significant effect on internal fragmentation.
Thus, it is good to understand the minimum block sizes associated with different
allocator designs and alignment requirements. The tricky part is to realize that
the same block can be allocated or free at different points in time. Thus, the
minimum block size is the maximum of the minimum allocated block size and

856 Chapter 9 Virtual Memory

the minimum free block size. For example, in the last subproblem, the minimum
allocated block size is a 4-byte header and a 1-byte payload rounded up to eight
bytes. The minimum free block size is a 4-byte header and 4-byte footer, which is
already a multiple of 8 and doesn’t need to be rounded. So the minimum block
size for this allocator is 8 bytes.

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer 12
Single word Header, but no footer Header and footer 8
Double word Header and footer Header and footer 16
Double word Header, but no footer Header and footer 8

Solution to Problem 9.8 (page 832)
There is nothing very tricky here. But the solution requires you to understand
how the rest of our simple implicit-list allocator works and how to manipulate
and traverse blocks.

code/vm/malloc/mm.c
1 static void *find_fit(size_t asize)

2 {

3 /* First fit search */

4 void *bp;

5

6 for (bp = heap_listp; GET_SIZE(HDRP(bp)) > 0; bp = NEXT_BLKP(bp)) {

7 if (!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)))) {

8 return bp;

9 }

10 }

11 return NULL; /* No fit */

code/vm/malloc/mm.c

Solution to Problem 9.9 (page 834)
This is another warm-up exercise to help you become familiar with allocators.
Notice that for this allocator the minimum block size is 16 bytes. If the remainder
of the block after splitting would be greater than or equal to the minimum block
size, then we go ahead and split the block (lines 6 to 10). The only tricky part here
is to realize that you need to place the new allocated block (lines 6 and 7) before
moving to the next block (line 8).

code/vm/malloc/mm.c
1 static void place(void *bp, size_t asize)

2 {

3 size_t csize = GET_SIZE(HDRP(bp));

4

5 if ((csize - asize) >= (2*DSIZE)) {

6 PUT(HDRP(bp), PACK(asize, 1));

Solutions to Practice Problems 857

7 PUT(FTRP(bp), PACK(asize, 1));

8 bp = NEXT_BLKP(bp);

9 PUT(HDRP(bp), PACK(csize-asize, 0));

10 PUT(FTRP(bp), PACK(csize-asize, 0));

11 }

12 else {

13 PUT(HDRP(bp), PACK(csize, 1));

14 PUT(FTRP(bp), PACK(csize, 1));

15 }

16 }

code/vm/malloc/mm.c

Solution to Problem 9.10 (page 837)
Here is one pattern that will cause external fragmentation: The application makes
numerous allocation and free requests to the first size class, followed by numer-
ous allocation and free requests to the second size class, followed by numerous
allocation and free requests to the third size class, and so on. For each size class,
the allocator creates a lot of memory that is never reclaimed because the allocator
doesn’t coalesce, and because the application never requests blocks from that size
class again.

