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Outline
Deadlock

definition

conditions for its occurrence

solutions: breaking deadlocks, avoiding deadlocks

efficiency vs. complexity

Other hard liveliness problems:

priority inversion, starvation, denial of service
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Definitions
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Resources

threads - active

resources - passive; things needed by the thread 
to do its job (CPU, disk space, memory).

2 kinds of resources:

preemptable: can take it away (CPU)

Non-preemptable: must leave w/ thread (disk 
space)
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Resources cont’d

lock/mutual exclusion - a kind of resource

a set of data that a thread needs exclusive 
access to to do a job.

Is a lock preemptable or non-preemptable?
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Starvation v. Deadlock

Starvation: thread waits indefinitely (e.g., some 
other thread is using the resource)

Deadlock: circular waiting for resources.

Deadlock implies starvation but not vice versa.
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Deadlock Example

THREAD A
x.acquire()
y.acquire()

THREAD B
y.acquire()
x.acquire()
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Deadlock Example

THREAD A
x.acquire()
y.acquire()

THREAD B
y.acquire()
x.acquire()

DEADLOCK: A SET OF BLOCKED PROCESSES EACH HOLDING A 
RESOURCE AND WAITING TO ACQUIRE A RESOURCE HELD BY 

ANOTHER IN THE SET.
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Deadlock in Kansas:
When two trains approach each other at a crossing, 
both shall come to a full stop and neither shall start 
up again until the other has gone.

Law passed by Kansas Legislature.
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Conditions for Deadlock
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Motivation

Deadlock can happen with any type of resource

Can occur with multiple resources (you can’t 
decompose the problem to solve deadlock for 
each resource)
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Example

T1
Shared 
Memory

Thread 1 holds a lock for 
shared memory
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Example

T1
Shared 
Memory

Thread 1 wants disk space 
so it waits

disk space
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Example

T1
Shared 
Memory

Thread 2 has a lock on the 
disk space and is waiting on  
the tape drive

disk space T2 Tape Drive
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Example

T1
Shared 
Memory

Thread 3 holds a lock on the 
tape drive and is waiting on 
shared memory

disk space T2 Tape Drive

T3
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Example

T1
Shared 
Memory

Each is waiting for the other 
to release.

disk space T2 Tape Drive

T3
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Deadlock

T1
Shared 
Memory

Each is waiting for the other 
to release.

disk space T2 Tape Drive

T3
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deadlock
can occur whenever there is waiting
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Conditions for deadlock
without ALL these, can’t have deadlock

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we 
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting
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resource allocation graph
a way to describe deadlocks
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Symbol Resources
thread

resource w/ four 
instances

thread requests 
instance

thread is holding a 
resource instance

T1

T1

T1
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Symbol Resources
thread

resource w/ four 
instances

thread requests 
instance

thread is holding a 
resource instance

T1

T1

T1

if no instance 
dots, there is only 

one instance
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T1

T1

yx
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resource allocation graph

no cycles  ➜ no deadlock exists

cycle ➜ deadlock may exist

if one instance of each resource  both necessary 
and sufficient condition

if multiple instances, necessary but not 
sufficient.
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Deadlock or not?
a quiz
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T1 T2

r2r1

r2

T3
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T1 T2

r2r1

r2

T3
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T1 T2

r2r1

r2

T3
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T1 T2

r2r1

r2

T3

T4
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Ignore the problem and 
pretend deadlocks never 
occur
used by most operating systems including 
UNIX.
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Detect and fix

scan graph
detect cycles
fix them   (the hard part)
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How to fix?

shoot thread. force it to give up resources.
not always possible.

thread holding mutex - if we force it to give it up 
the world could end up inconsistent.

roll back actions of deadlocked threads 
(“transactions”). common database technique.
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Preventing deadlock
key idea: get rid of one of the four necessary 
conditions
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What are those conditions?
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Conditions for deadlock
without ALL these, can’t have deadlock

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we 
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting
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avoiding deadlock hard

Thread 1
Grab A
Grab C

Wait for B

Thread 2
Grab B

wait for C
...
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Ideas?

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we 
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting
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Develop an order

each resource given a number

threads need to request resources in the correct 
order

problem?
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Deadlock Avoidance
An alternative to deadlock prevention
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Key concept: safe state

In a safe state there exists some ordering of 
resource grants that guarantees all 
processes can complete without deadlock
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SAFE

UNSAFEDeadlock
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SAFE

UNSAFEDeadlock

All deadlock states are unsafe, but not 
all unsafe states are deadlocks
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Our Goal:
Keep everything in a safe state
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Banker’s Algorithm
allow the sum of maximum resource needs 
of all current threads to be greater than the 
total resources, as long as there is some 
way for all threads to finish without getting 
into deadlock
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Banker’s Algorithm

need to state maximum resource needs in 
advance

allocate resources dynamically

Thursday, September 27, 12



/
// Invariant: the system is in a safe state 
//
ResourceMgr::Request(ResourceID resource,
   !!           RequestorID thread){ 
!      lock.acquire();
        assert(system is in a safe state);

        while(the state that would result from 
           giving resource to thread is not safe){
                cv.wait(&mutex);
             }
        update state by giving resource to thread 
        assert(system is in a safe state); 
        lock.release();
}
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/
// Invariant: the system is in a safe state 
//
ResourceMgr::Request(ResourceID resource,
   !!           RequestorID thread){ 
!      lock.acquire();
        assert(system is in a safe state);

        while(the state that would result from 
           giving resource to thread is not safe){
                cv.wait(&mutex);
             }
        update state by giving resource to thread 
        assert(system is in a safe state); 
        lock.release();
}

THE TRICK IS HOW TO DETERMINE IF THERE IS A SAFE SEQUENCE
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Max[i,j] // max resource j needed by process i 
Alloc[i,j] // current allocation of resource j to process i 
Need[i,j] = Max[i,j] – Alloc[i,j]
Avail[j] // number of resource j available
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TestSafe(Max[], Alloc[], Need[], Avail[]){
     Work[] = avail[]
     Finish[] = 0,0,0,... // Boolean; is process i finished?
            repeat{
         find i s.t. finish[i] = false and need[i] < work 
         if no such i exists
            if finish[i] = true forall i return true 
            else return false
         else
            work = work + alloc[i] 
            finish[i] = true
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