
Deadlocks
umw cs405

 much of the material from Prof. Dahlin, U Texas &
 from textbook

Thursday, September 27, 12

Outline
Deadlock

definition

conditions for its occurrence

solutions: breaking deadlocks, avoiding deadlocks

efficiency vs. complexity

Other hard liveliness problems:

priority inversion, starvation, denial of service

Thursday, September 27, 12

Definitions

Thursday, September 27, 12

Resources

threads - active

resources - passive; things needed by the thread
to do its job (CPU, disk space, memory).

2 kinds of resources:

preemptable: can take it away (CPU)

Non-preemptable: must leave w/ thread (disk
space)

Thursday, September 27, 12

Resources cont’d

lock/mutual exclusion - a kind of resource

a set of data that a thread needs exclusive
access to to do a job.

Is a lock preemptable or non-preemptable?

Thursday, September 27, 12

Starvation v. Deadlock

Starvation: thread waits indefinitely (e.g., some
other thread is using the resource)

Deadlock: circular waiting for resources.

Deadlock implies starvation but not vice versa.

Thursday, September 27, 12

Deadlock Example

THREAD A
x.acquire()
y.acquire()

THREAD B
y.acquire()
x.acquire()

Thursday, September 27, 12

Deadlock Example

THREAD A
x.acquire()
y.acquire()

THREAD B
y.acquire()
x.acquire()

DEADLOCK: A SET OF BLOCKED PROCESSES EACH HOLDING A
RESOURCE AND WAITING TO ACQUIRE A RESOURCE HELD BY

ANOTHER IN THE SET.

Thursday, September 27, 12

Deadlock in Kansas:
When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start
up again until the other has gone.

Law passed by Kansas Legislature.

Thursday, September 27, 12

Conditions for Deadlock

Thursday, September 27, 12

Motivation

Deadlock can happen with any type of resource

Can occur with multiple resources (you can’t
decompose the problem to solve deadlock for
each resource)

Thursday, September 27, 12

Example

T1
Shared
Memory

Thread 1 holds a lock for
shared memory

Thursday, September 27, 12

Example

T1
Shared
Memory

Thread 1 wants disk space
so it waits

disk space

Thursday, September 27, 12

Example

T1
Shared
Memory

Thread 2 has a lock on the
disk space and is waiting on
the tape drive

disk space T2 Tape Drive

Thursday, September 27, 12

Example

T1
Shared
Memory

Thread 3 holds a lock on the
tape drive and is waiting on
shared memory

disk space T2 Tape Drive

T3

Thursday, September 27, 12

Example

T1
Shared
Memory

Each is waiting for the other
to release.

disk space T2 Tape Drive

T3

Thursday, September 27, 12

Deadlock

T1
Shared
Memory

Each is waiting for the other
to release.

disk space T2 Tape Drive

T3

Thursday, September 27, 12

deadlock
can occur whenever there is waiting

Thursday, September 27, 12

PROJECT

DATE CLIENT27-09-2012 PHILOSOPHY DEPT.

DINING PHILOSOPHERS
DEADLOCK

Thursday, September 27, 12

Conditions for deadlock
without ALL these, can’t have deadlock

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting

Thursday, September 27, 12

resource allocation graph
a way to describe deadlocks

Thursday, September 27, 12

Symbol Resources
thread

resource w/ four
instances

thread requests
instance

thread is holding a
resource instance

T1

T1

T1

Thursday, September 27, 12

Symbol Resources
thread

resource w/ four
instances

thread requests
instance

thread is holding a
resource instance

T1

T1

T1

if no instance
dots, there is only

one instance

Thursday, September 27, 12

T1

T1

yx

Thursday, September 27, 12

resource allocation graph

no cycles ➜ no deadlock exists

cycle ➜ deadlock may exist

if one instance of each resource both necessary
and sufficient condition

if multiple instances, necessary but not
sufficient.

Thursday, September 27, 12

Deadlock or not?
a quiz

Thursday, September 27, 12

T1 T2

r2r1

r2

T3

Thursday, September 27, 12

T1 T2

r2r1

r2

T3

Thursday, September 27, 12

T1 T2

r2r1

r2

T3

Thursday, September 27, 12

T1 T2

r2r1

r2

T3

T4

Thursday, September 27, 12

Ignore the problem and
pretend deadlocks never
occur
used by most operating systems including
UNIX.

Thursday, September 27, 12

Detect and fix

scan graph
detect cycles
fix them (the hard part)

Thursday, September 27, 12

How to fix?

shoot thread. force it to give up resources.
not always possible.

thread holding mutex - if we force it to give it up
the world could end up inconsistent.

roll back actions of deadlocked threads
(“transactions”). common database technique.

Thursday, September 27, 12

Preventing deadlock
key idea: get rid of one of the four necessary
conditions

Thursday, September 27, 12

What are those conditions?

Thursday, September 27, 12

Conditions for deadlock
without ALL these, can’t have deadlock

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting

Thursday, September 27, 12

avoiding deadlock hard

Thread 1
Grab A
Grab C

Wait for B

Thread 2
Grab B

wait for C
...

Thursday, September 27, 12

Ideas?

1. limited access (mutex, bounded buffer, etc)

2.no preemption (if someone has a resource, we
can’t take it away.

3.multiple independent requests (wait while holding)

4.circular waiting

Thursday, September 27, 12

Develop an order

each resource given a number

threads need to request resources in the correct
order

problem?

Thursday, September 27, 12

Deadlock Avoidance
An alternative to deadlock prevention

Thursday, September 27, 12

Key concept: safe state

In a safe state there exists some ordering of
resource grants that guarantees all
processes can complete without deadlock

Thursday, September 27, 12

SAFE

UNSAFEDeadlock

Thursday, September 27, 12

SAFE

UNSAFEDeadlock

All deadlock states are unsafe, but not
all unsafe states are deadlocks

Thursday, September 27, 12

Our Goal:
Keep everything in a safe state

Thursday, September 27, 12

Banker’s Algorithm
allow the sum of maximum resource needs
of all current threads to be greater than the
total resources, as long as there is some
way for all threads to finish without getting
into deadlock

Thursday, September 27, 12

Banker’s Algorithm

need to state maximum resource needs in
advance

allocate resources dynamically

Thursday, September 27, 12

/
// Invariant: the system is in a safe state
//
ResourceMgr::Request(ResourceID resource,
 !! RequestorID thread){
! lock.acquire();
 assert(system is in a safe state);

 while(the state that would result from
 giving resource to thread is not safe){
 cv.wait(&mutex);
 }
 update state by giving resource to thread
 assert(system is in a safe state);
 lock.release();
}

Thursday, September 27, 12

/
// Invariant: the system is in a safe state
//
ResourceMgr::Request(ResourceID resource,
 !! RequestorID thread){
! lock.acquire();
 assert(system is in a safe state);

 while(the state that would result from
 giving resource to thread is not safe){
 cv.wait(&mutex);
 }
 update state by giving resource to thread
 assert(system is in a safe state);
 lock.release();
}

THE TRICK IS HOW TO DETERMINE IF THERE IS A SAFE SEQUENCE

Thursday, September 27, 12

Max[i,j] // max resource j needed by process i
Alloc[i,j] // current allocation of resource j to process i
Need[i,j] = Max[i,j] – Alloc[i,j]
Avail[j] // number of resource j available

Thursday, September 27, 12

TestSafe(Max[], Alloc[], Need[], Avail[]){
 Work[] = avail[]
 Finish[] = 0,0,0,... // Boolean; is process i finished?
 repeat{
 find i s.t. finish[i] = false and need[i] < work
 if no such i exists
 if finish[i] = true forall i return true
 else return false
 else
 work = work + alloc[i]
 finish[i] = true

Thursday, September 27, 12

Thursday, September 27, 12

Thursday, September 27, 12

