
VIRTUAL MEMORY
the ultimate abstraction

Monday, October 29, 12

VIRTUAL MEMORY

“In operating systems, when you see
the word virtual substitute the word

slow”

Monday, October 29, 12

VIRTUAL MEMORY

The basic idea is to treat physical
memory as a cache for the address

space of a computer

Monday, October 29, 12

Secondary Storage

Swap Space

physical
memory

Monday, October 29, 12

Secondary Storage

Swap Space

physical
memory

Fast Slow

Monday, October 29, 12

Secondary Storage

Swap Space

physical
memory

Fast Slow
Goal

Monday, October 29, 12

Virtual Memory

invented in late 60s / early 70s -- memory > $10K/M

today memory < $o.10 -> less important to
oversubscribe.

70s - disk a lot slower than CPU or memory

today - disk much much much much much slower

Monday, October 29, 12

execute typical instruction 1 nanosecond
fetch from L1 cache .5 nanoseconds
fetch from L2 cache 7 nanosec

fetch from main memory 100 nanosec
send 2k bytes over 1Gbps network 20,000 nanosec

read 1MB sequentially from memory 250,000 nanosec
fetch from new disk location 8,000,000 nanosec

read 1MB sequentially from disk 20,000,000 nanosec
send packet US to Europe and back 150,000,000 nanosec

Monday, October 29, 12

Virtual Memory

invented in late 60s / early 70s -- memory > $10K/M

today memory < $o.10 -> less important to
oversubscribe.

70s - disk a lot slower than CPU or memory

today - disk much much much much much slower

still, its convenient - can start 100s of shells @ 1 MB
each w/0 worrying.

Monday, October 29, 12

My Macbook...

Monday, October 29, 12

Virtual Memory

in 70s - difficult to invent

now that we know how to do it, not that hard so worth
having around.

Monday, October 29, 12

virtual memory

demand paging

process creation

page replacement

allocation of frames

thrashing

Monday, October 29, 12

Monday, October 29, 12

background
Virtual Memory - separation of user logical memory
from physical memory

only part of the program needs to be in memory for
execution.

logical address space can therefore be much larger
than physical address space

allows address spaces to be shared among processes

allows more programs to run

allows for more efficient process creation

Monday, October 29, 12

implementation

can be implemented via

demand paging

demand segmentation

Monday, October 29, 12

Virtual Memory can be larger than Physical M.

Monday, October 29, 12

Virtual
Address
Space

Monday, October 29, 12

VM has many uses

separates logical from physical memory (abstraction)

system libraries can be shared

it can enable processes to share memory

allow pages to be shared during process creation with
fork()

Monday, October 29, 12

shared library using virtual memory

Monday, October 29, 12

DEMAND PAGING
bring a page into memory only when

it is needed

Monday, October 29, 12

Demand Paging

Less I/O needed

less memory needed

faster response

more users / more applications

Monday, October 29, 12

LAZY SWAPPER

In a paging system, processes reside
in a disk. The whole process will not

be placed into memory.

Monday, October 29, 12

A LAZY SWAPPER

never swaps a page into memory
unless that page will be needed.

Monday, October 29, 12

A LAZY SWAPPER

swaps out unwanted pages onto the
disk.

Monday, October 29, 12

Transfer of a paged memory
to contiguous disk space

Monday, October 29, 12

need hardware support
to implement

page table
frame

Monday, October 29, 12

need hardware support
to implement

page table
frame valid - invalid bit

1
1
1
1
0
0
0
0

Monday, October 29, 12

need hardware support
to implement

page table
frame valid - invalid bit

1
1
1
1
0
0
0
0

initially all
pages marked as

invalid

Monday, October 29, 12

need hardware support
to implement

page table
frame valid - invalid bit

1
1
1
1
0
0
0
0

initially all
pages marked as

invalid

during address
translation, if bit 0

we page fault.

Monday, October 29, 12

page table when some pages are
not in main memory

Monday, October 29, 12

page fault
if there is ever a reference to a page, first reference will
trap to OS (= page fault)

OS looks @ another table to decide

invalid reference -> abort

just not in memory

get empty frame

swap page into frame

reset table, validation bit = 1

restart instruction
Monday, October 29, 12

0091 movl 0x0092 %ecx
0094 movl 0x007b %edx

Monday, October 29, 12

steps in handling page fault

Monday, October 29, 12

implementation issues

what happens if page is written?

write through - send write immediately to lower level
(disk)

write back - send write to lower level when page evicted
from higher level

Which should we use here?

How would we know a page needs to be written back?

Monday, October 29, 12

dirty bit

implemented in TLB - when TLB sees a write request
to a page, it sets the dirty bit in TLB, when evicted
from TLB need to copy dirty bit to page table and core
map

Monday, October 29, 12

what happens if there is no
free frame?

page replacement - find some page in memory, but not
really in use, swap it out.

need algorithm, that results in minimum number of
page faults.

same page may be brought into memory several times.

Monday, October 29, 12

TEMPORAL LOCALITY

these schemes require

Monday, October 29, 12

HVAC

Monday, October 29, 12

HVAC

Monday, October 29, 12

HVAC

Monday, October 29, 12

temporal locality

Monday, October 29, 12

Memory

Server

Monday, October 29, 12

Initialization

Monday, October 29, 12

Servicing requests

Monday, October 29, 12

syncing w/ master server

Monday, October 29, 12

temporal locality

Monday, October 29, 12

performance

page fault rate 0 < p < 1

if p = 0 ➩ no page faults

if p = 1 ➩ every reference is a page fault

Monday, October 29, 12

Effective Access Time

ma = memory access time typica!y 50 - 100 ns (if in L2 ~5)

p% = page fault time

EAT = (1 - p) ma + p(p%)

p% = ?

Monday, October 29, 12

PFT

time to trap to OS (save registers, determine input was
page fault, etc.)

swap page out (wait in queue until write, seek & latency
time of HD)

swap page in (wait in queue until read, seek & latency
time of HD, transfer page to free frame)

restart overhead.

Monday, October 29, 12

example

memory access time = 100 nanoseconds

avg page fault service time 10 milliseconds

EAT = (1 - p)100 + p(10,000,000)

let’s say one access out of 1,000 leads to a page fault

Monday, October 29, 12

example

EAT = (1 - p)100 + p(10,000,000)

EAT = (.999) 100 + .001(10,000,000)
 = 99.9 + 10000
 = 10099.9

Monday, October 29, 12

example

EAT = (1 - p)100 + p(10,000,000)

EAT = (.999) 100 + .001(10,000,000)
 = 99.9 + 10000
 = 10099.9

compared to no page faults = 100ns

slowed down the computer by a factor of 100.

Monday, October 29, 12

example

if I want only 10% degradation...

need one fault out of ???????

Monday, October 29, 12

example
if I want only 10% degradation...

1.1(t_mem) = (1-p)t_mem + p(t_disk)

p = (.1 t_mem) / (t_mem + t_disk)

~= (.1 * 10^2)/ (10^7 + 10^2)

~= 10^-6

at most one access out of 1,000,000 can be a page
fault. (hit rate greater than 99.9999%)

Monday, October 29, 12

VM
BENEFITS DURING

PROCESS CREATION
copy-on-write

Monday, October 29, 12

copy-on-write

both parent and child process initially share the same
pages in memory

if either modifies a shared page, only then it is copied.

allows for efficient process creation as only modified
pages are copied

used by Windows, Linux, Solaris, Mac OSX

Monday, October 29, 12

OVER-ALLOCATING
MEMORY

when we increase multiprogramming
we ‘overbook’ memory

(over-allocating memory)

Monday, October 29, 12

Page Replacement

prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

use modify (dirty) bit to reduce overhead of page
transfers - only modified pages are written to disk.

page replacement completes separation between logical
memory and physical memory - large virtual memory
can be provided on a smaller physical memory.

Monday, October 29, 12

need for page replacement

Monday, October 29, 12

basic page replacement

find the location of the desired page on the disk

find a free frame:

if there is a free frame, use it

if there is no free frame, use a page replacement
algorithm to select the victim frame.

read the desired page into the (newly) free frame.
Update the page and frame tables.

restart the process

Monday, October 29, 12

page replacement

Monday, October 29, 12

page replacement
algorithms

want lowest page-fault rate

evaluate algorithm by running it on a particular string
of memory references (reference string) and computing
the number of page faults on that string.

in all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Monday, October 29, 12

team work
come up with a page replacement algorithm

assume a memory sizes of 1, 2, 3, 4, and 5 frames

compute page faults

1 1 1

2 2

3 cont’d

Monday, October 29, 12

Graph of page faults vs. number of frames

Monday, October 29, 12

WHAT IS THE
OPTIMAL SOLUTION?

How do you know it is optimal?

Monday, October 29, 12

deliverables

for ea. algorithm

for ea. memory size (1-5)

diagram showing memory contents @ ea. state of
reference string (1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5)

number of page faults

graph

Monday, October 29, 12

Monday, October 29, 12

Optimal Algorithm?

Monday, October 29, 12

Optimal Algorithm

replace page that will not be used for the longest period
of time.

(4 frame example) -6 page faults

used for measuring how well other algorithms perform

Monday, October 29, 12

optimal page replacement

Monday, October 29, 12

results -- Who did...

FIFO

Least recently used

what others?

Monday, October 29, 12

First-in-first-out FIFO

reference string 1 2 3 4 1 2 5 1 2 3 4 5

3 frames: 9 page faults

4 frames: 10 page faults

Monday, October 29, 12

BELADY’S ANOMALY

Monday, October 29, 12

FIFO illustrating Belady’s Anomaly

Monday, October 29, 12

LRU DEMO
memory size = 4, 3

Monday, October 29, 12

LRU page replacement

Monday, October 29, 12

LRU algorithm

stack implementation - keep a stack of page numbers in
a double link form

page referenced:

move it to the top

requires 6 pointers to be changed

no search for replacement

Monday, October 29, 12

use of a stack to record the most recent page refs.

Monday, October 29, 12

LRU
is the most used page replacement algorithm

does not exhibit Belady’s alnomaly

LRU belongs to a class of page replacement algorithms
called stack algorithms

stack algorithms never exhibit Belady’s anomaly

a stack algorithm is an algorithm for which it can be
shown that the set of pages in memory for n frames is
always a subset of the set of pages that are in memory
with n + 1 frames

Monday, October 29, 12

LRU

Few Computer Systems provide sufficient hardware
support for true LRU page replacements

Monday, October 29, 12

LRU approximation
Algorithms

base case: reference bit

with each page associate a bit, initially 0

when page is referenced bit set to 1

replace the one which is 0 if one exists

Monday, October 29, 12

additional reference bit
algorithm

have 8 bit byte for each page

at certain interval (100ms) interrupt and transfer
control to OS

shift bits to right. add current reference bit on left.

use frame with smallest number.

Monday, October 29, 12

fr 0 1

fr 1 0

fr 2 0

fr 3 1

fr 4 1

fr 5 0

fr 6 0

fr 7 1

Monday, October 29, 12

fr 0 1

fr 1 0

fr 2 0

fr 3 1

fr 4 1

fr 5 0

fr 6 0

fr 7 1

shift

Monday, October 29, 12

fr 0 1 1

fr 1 0 0

fr 2 0 0

fr 3 0 1

fr 4 1 1

fr 5 1 0

fr 6 0 0

fr 7 1 1

add current reference bit

Monday, October 29, 12

fr 0 1 1 1

fr 1 0 0 0

fr 2 0 0 0

fr 3 0 0 1

fr 4 0 1 1

fr 5 1 1 0

fr 6 1 0 0

fr 7 1 1 1

Monday, October 29, 12

fr 0 0 1 0 1 1 0 0 1

fr 1 1 1 1 1 0 1 1 1

fr 2 1 0 1 0 0 1 1 0

fr 3 0 0 0 0 1 1 1 0

fr 4 1 1 1 1 0 1 1 1

fr 5 1 1 0 0 1 0 0 1

fr 6 0 0 1 1 1 0 0 0

fr 7 0 0 0 1 1 1 1 1

Monday, October 29, 12

fr 0 0 1 0 1 1 0 0 1

fr 1 1 1 1 1 0 1 1 1

fr 2 1 0 1 0 0 1 1 0

fr 3 0 0 0 0 1 1 1 0

fr 4 1 1 1 1 0 1 1 1

fr 5 1 1 0 0 1 0 0 1

fr 6 0 0 1 1 1 0 0 0

fr 7 0 0 0 1 1 1 1 1

replace frame
with

smallest
number

Monday, October 29, 12

LRU approximation
algorithms

second chance algorithm

a FIFO algorithm with a twist

need a reference bit

Think of a circular queue of pages (a clock)

Monday, October 29, 12

Second Chance Algorithm
examine pages in clock order
if page.refBit == 1:
 page.refBit = 0

 # leave page in memory
 # replace next page subject to
 # same rules.
else: # refBit == 0
 replace page

Monday, October 29, 12

second chance algorithm
Monday, October 29, 12

YOU TRY
1 2 3 4 1 2 5 1 2 3 4 5

memory sizes of 3 and 4 frames

Monday, October 29, 12

enhanced 2nd chance
use both reference and modify bits. With these bits as
ordered pair we have the following 4 cases:

(0, 0) neither recently used nor modified - best page to
replace.

(0, 1) not recently used but modified - not quite as good
since page needs to be written out before replacement

(1, 0) recently used but clean. it will probably be used
again.

(1, 1) recently used and modified.

replace 1st page encountered in the lowest non-empty
class

Monday, October 29, 12

counting algorithms

keep counter of the number of references that have
been made to each page.

LFU algorithm (least frequently used): replaces page
with smallest count.

MFU algorithm (most frequently used): based on the
argument that the page with the smallest count was
probably just brought in.

Neither algorithm used much.

Monday, October 29, 12

trade off

clever algorithms which may work well

clever algorithms are probably expensive

Monday, October 29, 12

page buffering algorithms

always maintain a pool of free frames

when a page fault occurs you assign the desired page to
a free frame from the pool

at the same time you find a victim, write out the page,
and put the victim frame in the pool.

Monday, October 29, 12

</ REPLACEMENT ALGORITHMS>

Monday, October 29, 12

ALLOCATION OF
FRAMES

how do we allocate free memory?

Monday, October 29, 12

ALLOCATION POLICY
How should memory be allocated

among competing runnable processes?

Monday, October 29, 12

ALLOCATION POLICY
say our page replacement algorithm is

LRU
we have 3 processes

A, B, and C

Monday, October 29, 12

process age(time)
A0 10
A1 7
A2 5
A3 4
A4 6
A5 3
B0 9
B1 4
B2 6
B3 2
B4 5
B5 6
B6 12
C1 3
C2 5
C3 6

Monday, October 29, 12

2 strategies

global: in using LRU consider all pages in memory

local: in using LRU consider only pages for current
process

Monday, October 29, 12

process age(time)
A0 10
A1 7
A2 5
A3 4
A4 6
A5 3
B0 9
B1 4
B2 6
B3 2
B4 5
B5 6
B6 12
C1 3
C2 5
C3 6

consider A page faults
requesting A6.

For global policy which frame
gets replaced?

Monday, October 29, 12

worst case thinking

let’s say we have move instruction

move x to z

worst case, how many pages might we need?

Monday, October 29, 12

allocation of frames

each process needs minimum number of pages

some machines may need up to 6 pages to handle a
single 2 operand instruction.

the instruction may straddle a page boundary

ea. operand may also straddle

(for ex., IBM 370)

if you allocation the process 5 frames the process
cannot run.

Monday, October 29, 12

2 major types of allocation

Fixed: assign certain number of frames to a process and
that number stays constant.

Variable allocation

Monday, October 29, 12

fixed allocation

equal allocation - if 100 frames and 5 processes - give
each 20 pages

proportional allocation - allocate according to the size
of the process

Monday, October 29, 12

priority allocation

use a proportional allocation scheme using priorities
rather than size.

if process P generates a page fault, select for
replacement:

one of its frames

a frame from a process with lower priority

Monday, October 29, 12

Global replacement schemes the
most common method.

Monday, October 29, 12

1 2 3 4 1 5 6 2 3 7 8 1 2 9 10 11 1 2

Consider LRU and memory size 3
What can you say about the page

fault behavior?

Monday, October 29, 12

If a process is spending more time paging then executing,

the process is said to be ...

Monday, October 29, 12

THRASHING

Monday, October 29, 12

Thrashing

if a process does not have ‘enough’ pages, the page-fault
rate is very high and leads to

low CPU utilization

OS thinks that it needs to increase
multiprogramming

another process is added to the system

Monday, October 29, 12

Thrashing

a process is busy swapping pages in and out

not terrible if one process thrashing

it all processes are thrashing we got a problem

Monday, October 29, 12

Thrashing
no work gets done

processes spending their time page faulting.
Monday, October 29, 12

locality model
one method of determining this need is the locality
model.

the model states that as a process executes, it moves
from one locality to another

a locality is a set of pages that are actively used
together

a program contains several different localities which
may overlap

assume access is not random

examples: text processing / compiling / etc.

Monday, October 29, 12

locality in a
memory-
reference
pattern

Monday, October 29, 12

locality and thrashing

why does paging work

access not random pattern

locality model

process migrates from one locality to another

localities may overlap

Monday, October 29, 12

why does thrashing occur

∑ size of locality > total memory size

Monday, October 29, 12

working-set model

∆ a working-set window - a fixed number of page
references. for ex., 10,000 instructions

WSS (working set of a process) =
total number of pages referenced in the most recent ∆

if ∆ too small - will not encompass entire locality

if ∆ too large will encompass several localities

if ∆ huge will ecompass entire program

 D = ∑ WSS = total frame demand

Monday, October 29, 12

working set model

OS monitors the working set of each process.

it allocates to each process enough frames to fulfill its
working set requirements

if D > m ➠ thrashing

Policy: if D > m then suspend one of the processes

thus preventing thrashing

Monday, October 29, 12

working set model

Monday, October 29, 12

keeping track of the working set
approximate with interval time + reference bit

example ∆ = 10,000

timer interrupts after every 5,000 time units

keep in memory 2 bits for ea. page

whenever a timer interrupts copy and set the values of
all reference bits to 0

if one of the bits in memory = 1 ➠ page in working set

improvement: 10 bits and interrupt every 1000 time
units (however, cost of interrupts higher)

Monday, October 29, 12

ANOTHER
ANTI-THRASHING

TECHNIQUE
page-fault frequency scheme

Monday, October 29, 12

page fault frequency

establish acceptable range for page faults

if actual rate too low, process loses frame

if too high, process gains frame

Monday, October 29, 12

page fault frequency

Monday, October 29, 12

demand paging is meant to
be transparent but...

int A[][] = new int[1024][1024]
for (j = 0; j < 1024; j++)
 for (i = 0; i < 1024; i++)
 A[i, j] = 0

int A[][] = new int[1024][1024]
for (j = 0; j < 1024; j++)
 for (i = 0; i < 1024; i++)
 A[j, i] = 0

program 1 program 2

1024 x 1024 page faults 1024 page faults

Monday, October 29, 12

</MEMORY>

Monday, October 29, 12

