
VIRTUAL MEMORY
the ultimate abstraction
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VIRTUAL MEMORY

“In operating systems, when you see 
the word virtual substitute the word 

slow”
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VIRTUAL MEMORY

The basic idea is to treat physical 
memory as a cache for the address 

space of a computer
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Secondary Storage

Swap Space

physical 
memory
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Secondary Storage

Swap Space

physical 
memory

Fast Slow
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Secondary Storage

Swap Space

physical 
memory

Fast Slow
Goal
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Virtual Memory

invented in late 60s / early 70s -- memory > $10K/M

today memory < $o.10 -> less important to 
oversubscribe.

70s - disk a lot slower than CPU or memory

today - disk much much much much much slower
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execute typical instruction 1 nanosecond
fetch from L1 cache .5 nanoseconds
fetch from L2 cache 7 nanosec

fetch from main memory 100 nanosec
send 2k bytes over 1Gbps network 20,000 nanosec

read 1MB sequentially from memory 250,000 nanosec
fetch from new disk location 8,000,000 nanosec

read 1MB sequentially from disk 20,000,000 nanosec
send packet US to Europe and back 150,000,000 nanosec
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Virtual Memory

invented in late 60s / early 70s -- memory > $10K/M

today memory < $o.10 -> less important to 
oversubscribe.

70s - disk a lot slower than CPU or memory

today - disk much much much much much slower

still, its convenient - can start 100s of shells @ 1 MB 
each w/0 worrying.
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My Macbook...
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Virtual Memory

in 70s - difficult to invent

now that we know how to do it, not that hard so worth 
having around.
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virtual memory 

demand paging

process creation

page replacement

allocation of frames

thrashing
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background
Virtual Memory - separation of user logical memory 
from physical memory

only part of the program needs to be in memory for 
execution.

logical address space can therefore be much larger 
than physical address space

allows address spaces to be shared among processes

allows more programs to run

allows for more efficient process creation
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implementation

can be implemented via

demand paging

demand segmentation
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Virtual Memory can be larger than Physical M.
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Virtual 
Address
Space

Monday, October 29, 12



VM has many uses

separates logical from physical memory (abstraction)

system libraries can be shared

it can enable processes to share memory

allow pages to be shared during process creation with 
fork()
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shared library using virtual memory
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DEMAND PAGING
bring a page into memory only when 

it is needed
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Demand Paging

Less I/O needed

less memory needed

faster response

more users / more applications
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LAZY SWAPPER

In a paging system, processes reside 
in a disk. The whole process will not 

be placed into memory.

Monday, October 29, 12



A LAZY SWAPPER

never swaps a page into memory 
unless that page will be needed.
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A LAZY SWAPPER

swaps out unwanted pages onto the 
disk.
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Transfer of  a paged memory 
to contiguous disk space
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need hardware support 
to implement

page table
frame    

Monday, October 29, 12



need hardware support 
to implement

page table
frame                      valid - invalid bit                      

1
1
1
1
0
0
0
0
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need hardware support 
to implement

page table
frame                      valid - invalid bit                      

1
1
1
1
0
0
0
0

initially all 
pages marked as 

invalid
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need hardware support 
to implement

page table
frame                      valid - invalid bit                      

1
1
1
1
0
0
0
0

initially all 
pages marked as 

invalid

during address 
translation, if bit 0 

we page fault.
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page table when some pages are 
not in main memory
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page fault
if there is ever a reference to a page, first reference will 
trap to OS (= page fault)

OS looks @ another table to decide

invalid reference -> abort

just not in memory

get empty frame

swap page into frame

reset table, validation bit = 1

restart instruction
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0091     movl     0x0092 %ecx
0094     movl     0x007b %edx
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steps in handling page fault
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implementation issues

what happens if page is written?

write through - send write immediately to lower level 
(disk)

write back - send write to lower level when page evicted 
from higher level

Which should we use here?

How would we know a page needs to be written back?
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dirty bit

implemented in TLB - when TLB sees a write request 
to a page, it sets the dirty bit in TLB, when evicted 
from TLB need to copy dirty bit to page table and core 
map
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what happens if  there is no 
free frame?

page replacement - find some page in memory, but not 
really in use, swap it out.

need algorithm, that results in minimum number of 
page faults.

same page may be brought into memory several times.
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TEMPORAL LOCALITY

these schemes require
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HVAC
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HVAC
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HVAC
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temporal locality
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Memory

Server
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Initialization
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Servicing requests

Monday, October 29, 12



syncing w/ master server
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temporal locality
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performance

page fault rate 0 < p < 1

if p = 0 ➩ no page faults

if p = 1 ➩ every reference is a page fault
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Effective Access Time

ma = memory access time  typica!y 50 - 100 ns  (if in L2 ~5)

p% = page fault time

EAT = (1 - p) ma + p(p%)

p% = ?
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PFT

time to trap to OS (save registers, determine input was 
page fault, etc.)

swap page out (wait in queue until write, seek & latency 
time of HD)

swap page in (wait in queue until read, seek & latency 
time of HD, transfer page to free frame)

restart overhead.
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example

memory access time = 100 nanoseconds

avg page fault service time 10 milliseconds

EAT = (1 - p)100 + p(10,000,000)

let’s say one access out of 1,000 leads to a page fault
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example

EAT = (1 - p)100 + p(10,000,000)

EAT = (.999) 100 + .001(10,000,000)
         = 99.9 + 10000
         = 10099.9

Monday, October 29, 12



example

EAT = (1 - p)100 + p(10,000,000)

EAT = (.999) 100 + .001(10,000,000)
         = 99.9 + 10000
         = 10099.9

compared to no page faults = 100ns

slowed down the computer by a factor of 100.
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example

if I want only 10% degradation...

need one fault out of ???????
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example
if I want only 10% degradation...

1.1(t_mem) = (1-p)t_mem + p(t_disk)

p = (.1 t_mem) / (t_mem + t_disk)

~= (.1 * 10^2)/ (10^7 + 10^2)

~= 10^-6

at most one access out of 1,000,000 can be a page 
fault. (hit rate greater than 99.9999%)
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VM 
BENEFITS DURING 

PROCESS CREATION
copy-on-write
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copy-on-write

both parent and child process initially share the same 
pages in memory

if either modifies a shared page, only then it is copied.

allows for efficient process creation as only modified 
pages are copied

used by Windows, Linux, Solaris, Mac OSX
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OVER-ALLOCATING 
MEMORY

when we increase multiprogramming 
we ‘overbook’ memory

(over-allocating memory)
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Page Replacement

prevent over-allocation of memory by modifying page-
fault service routine to include page replacement.

use modify (dirty) bit to reduce overhead of page 
transfers - only modified pages are written to disk.

page replacement completes separation between logical 
memory and physical memory - large virtual memory 
can be provided on a smaller physical memory.
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need for page replacement
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basic page replacement

find the location of the desired page on the disk

find a free frame:

if there is a free frame, use it

if there is no free frame, use a page replacement 
algorithm to select the victim frame.

read the desired page into the (newly) free frame. 
Update the page and frame tables.

restart the process
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page replacement
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page replacement 
algorithms

want lowest page-fault rate

evaluate algorithm by running it on a particular string 
of memory references (reference string) and computing 
the number of page faults on that string.

in all our examples, the reference string is 
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
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team work
come up with a page replacement algorithm

assume a memory sizes of 1, 2, 3, 4, and 5 frames

compute page faults

1 1 1

2 2

3 cont’d

Monday, October 29, 12



Graph of  page faults vs. number of  frames
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WHAT IS THE 
OPTIMAL SOLUTION?

How do you know it is optimal?
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deliverables

for ea. algorithm

for ea. memory size (1-5)

diagram showing memory contents @ ea. state of 
reference string (1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5)

number of page faults

graph 
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Optimal Algorithm?
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Optimal Algorithm

replace page that will not be used for the longest period 
of time.

(4 frame example) -6 page faults

used for measuring how well other algorithms perform 
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optimal page replacement
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results -- Who did...

FIFO

Least recently used

what others?
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First-in-first-out FIFO

reference string 1 2 3 4 1 2 5 1 2 3 4 5

3 frames: 9 page faults

4 frames: 10 page faults
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BELADY’S ANOMALY
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FIFO illustrating Belady’s Anomaly
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LRU DEMO
memory size = 4, 3
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LRU page replacement
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LRU algorithm

stack implementation - keep a stack of page numbers in 
a double link form

page referenced:

move it to the top

requires 6 pointers to be changed

no search for replacement

Monday, October 29, 12



use of  a stack to record the most recent page refs.
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LRU
is the most used page replacement algorithm

does not exhibit Belady’s alnomaly

LRU belongs to a class of page replacement algorithms 
called stack algorithms

stack algorithms never exhibit Belady’s anomaly

a stack algorithm is an algorithm for which it can be 
shown that the set of pages in memory for n frames is 
always a subset of the set of pages that are in memory 
with n + 1 frames
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LRU

Few Computer Systems provide sufficient hardware 
support for true LRU page replacements
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LRU approximation 
Algorithms

base case: reference bit

with each page associate a bit, initially 0

when page is referenced bit set to 1

replace the one which is 0 if one exists 
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additional reference bit 
algorithm

have 8 bit byte for each page

at certain interval (100ms) interrupt and transfer 
control to OS

shift bits to right. add current reference bit on left.

use frame with smallest number.
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fr 0 1

fr 1 0

fr 2 0

fr 3 1

fr 4 1

fr 5 0

fr 6 0

fr 7 1

Monday, October 29, 12



fr 0  1

fr 1  0

fr 2  0

fr 3  1

fr 4  1

fr 5  0

fr 6  0

fr 7  1

shift
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fr 0 1 1

fr 1 0 0

fr 2 0 0

fr 3 0 1

fr 4 1 1

fr 5 1 0

fr 6 0 0

fr 7 1 1

add current reference bit
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fr 0 1 1 1

fr 1 0 0 0

fr 2 0 0 0

fr 3 0 0 1

fr 4 0 1 1

fr 5 1 1 0

fr 6 1 0 0

fr 7 1 1 1
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fr 0 0 1 0 1 1 0 0 1

fr 1 1 1 1 1 0 1 1 1

fr 2 1 0 1 0 0 1 1 0

fr 3 0 0 0 0 1 1 1 0

fr 4 1 1 1 1 0 1 1 1

fr 5 1 1 0 0 1 0 0 1

fr 6 0 0 1 1 1 0 0 0

fr 7 0 0 0 1 1 1 1 1
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fr 0 0 1 0 1 1 0 0 1

fr 1 1 1 1 1 0 1 1 1

fr 2 1 0 1 0 0 1 1 0

fr 3 0 0 0 0 1 1 1 0

fr 4 1 1 1 1 0 1 1 1

fr 5 1 1 0 0 1 0 0 1

fr 6 0 0 1 1 1 0 0 0

fr 7 0 0 0 1 1 1 1 1

replace frame
with

smallest
number
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LRU approximation 
algorithms

second chance algorithm

a FIFO algorithm with a twist

need a reference bit

Think of a circular queue of pages (a clock)
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Second Chance Algorithm
#  examine pages in clock order
if page.refBit == 1:
      page.refBit = 0

  # leave page in memory
  # replace next page subject to 
  # same rules. 
else: # refBit == 0
  replace page 
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second chance algorithm
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YOU TRY
1 2 3 4 1 2 5 1 2 3 4 5

memory sizes of 3 and 4 frames
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enhanced 2nd chance
use both reference and modify bits. With these bits as 
ordered pair we have the following 4 cases:

(0, 0) neither recently used nor modified - best page to 
replace.

(0, 1) not recently used but modified - not quite as good 
since page needs to be written out before replacement

(1, 0) recently used but clean. it will probably be used 
again.

(1, 1) recently used and modified. 

replace 1st page encountered in the lowest non-empty 
class
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counting algorithms

keep counter of the number of references that have 
been made to each page.

LFU algorithm (least frequently used): replaces page 
with smallest count.

MFU algorithm (most frequently used): based on the 
argument that the page with the smallest count was 
probably just brought in.

Neither algorithm used much.
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trade off

clever algorithms which may work well

clever algorithms are probably expensive
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page buffering algorithms

always maintain a pool of free frames

when a page fault occurs you assign the desired page to 
a free frame from the pool

at the same time you find a victim, write out the page, 
and put the victim frame in the pool.
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</ REPLACEMENT ALGORITHMS>
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ALLOCATION OF 
FRAMES

how do we allocate free memory?
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ALLOCATION POLICY
How should memory be allocated 

among competing runnable processes?
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ALLOCATION POLICY
say our page replacement algorithm is 

LRU
we have 3 processes

A, B, and C
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process age(time)
A0 10
A1 7
A2 5
A3 4
A4 6
A5 3
B0 9
B1 4
B2 6
B3 2
B4 5
B5 6
B6 12
C1 3
C2 5
C3 6
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2 strategies

global: in using LRU consider all pages in memory

local: in using LRU consider only pages for current 
process
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process age(time)
A0 10
A1 7
A2 5
A3 4
A4 6
A5 3
B0 9
B1 4
B2 6
B3 2
B4 5
B5 6
B6 12
C1 3
C2 5
C3 6

consider A page faults 
requesting A6.

For global policy which frame 
gets replaced?
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worst case thinking

let’s say we have move instruction

move x to z

worst case, how many pages might we need?
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allocation of  frames

each process needs minimum number of pages

some machines may need up to 6 pages to handle a 
single 2 operand instruction.

the instruction may straddle a page boundary

ea. operand may also straddle

(for ex., IBM 370)

if you allocation the process 5 frames the process 
cannot run.
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2 major types of  allocation

Fixed: assign certain number of frames to a process and 
that number stays constant.

Variable allocation
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fixed allocation 

equal allocation - if 100 frames and 5 processes - give 
each 20 pages

proportional allocation - allocate according to the size 
of the process
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priority allocation

use a proportional allocation scheme using priorities 
rather than size.

if process P generates a page fault, select for 
replacement:

one of its frames

a frame from a process with lower priority
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Global replacement schemes the 
most common method.
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1 2 3 4 1 5 6 2 3 7 8 1 2 9 10 11  1  2

Consider LRU and memory size 3
What can you say about the page 

fault behavior?
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If a process is spending more time paging then executing,

the process is said to be ...
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THRASHING
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Thrashing

if a process does not have ‘enough’ pages, the page-fault 
rate is very high and leads to

low CPU utilization

OS thinks that it needs to increase 
multiprogramming

another process is added to the system
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Thrashing

a process is busy swapping pages in and out

not terrible if one process thrashing

it all processes are thrashing we got a problem
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Thrashing
no work gets done 

processes spending their time page faulting.
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locality model 
one method of determining this need is the locality 
model.

the model states that as a process executes, it moves 
from one locality to another

a locality is a set of pages that are actively used 
together

a program contains several different localities which 
may overlap

assume access is not random

examples: text processing / compiling / etc.
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locality in a 
memory-
reference 
pattern
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locality and thrashing

why does paging work

access not random pattern

locality model

process migrates from one locality to another

localities may overlap
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why does thrashing occur

∑ size of locality > total memory size
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working-set model

∆ a working-set window - a fixed number of page 
references. for ex., 10,000 instructions

WSS (working set of a process) = 
total number of pages referenced in the most recent ∆

if ∆ too small - will not encompass entire locality

if ∆ too large will encompass several localities 

if ∆ huge will ecompass entire program

 D = ∑ WSS = total frame demand
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working set model

OS monitors the working set of each process.

it allocates to each process enough frames to fulfill its 
working set requirements

if D > m ➠ thrashing

Policy: if D > m then suspend one of the processes

thus preventing thrashing
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working set model
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keeping track of  the working set
approximate with interval time + reference bit

example ∆ = 10,000

timer interrupts after every 5,000 time units

keep in memory 2 bits for ea. page

whenever a timer interrupts copy and set the values of 
all reference bits to 0

if one of the bits in memory = 1 ➠ page in working set

improvement: 10 bits and interrupt every 1000 time 
units (however, cost of interrupts higher)
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ANOTHER 
ANTI-THRASHING 

TECHNIQUE
page-fault frequency scheme
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page fault frequency

establish acceptable range for page faults

if actual rate too low, process loses frame

if too high, process gains frame
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page fault frequency
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demand paging is meant to 
be transparent but...

int A[][] = new int[1024][1024]
for (j = 0; j < 1024; j++)
  for ( i = 0; i < 1024; i++)
   A[i, j] = 0 

int A[][] = new int[1024][1024]
for (j = 0; j < 1024; j++)
  for ( i = 0; i < 1024; i++)
   A[j, i] = 0 

program 1 program 2

1024 x 1024 page faults 1024 page faults
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</MEMORY>
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