
Slides from

 Silberschatz, Galvin and Gagne ©2003

Thu D. Nguyen

Michael Hicks

Basic Concepts

 CPU-I/O burst cycle - Process
execution consists of a cycle of
CPU execution and I/O wait.

 CPU burst distribution
 What are the typical burst sizes of a
process's execution?

Process Behavior

Long CPU burst

Short CPU burst

Waiting for I/O

Alternating Sequence of CPU And I/O
Bursts

Job Behavior
 I/O bound jobs: Jobs that perform lots of
I/O tend to have short CPU bursts

 CPU bound jobs: Jobs that perform very
little I/O tend to have very long CPU
bursts

Long CPU burst

Short CPU burst

Waiting for I/O

Job Behavior
 Distribution tends to be hyper-
exponential: Very large number of very
short CPU bursts. Small number of very
long CPU bursts.

Long CPU burst

Short CPU burst

Waiting for I/O

Histogram of CPU-burst Times

CPU Scheduler

Selects from among the processes in
memory that are ready to execute,
and allocates the CPU to one of
them

<When scheduling decisions take place>

 When a process ...

1. Switches from running to waiting

state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

<When scheduling decisions take place>
 When a process ...

1. Switches from running to waiting

state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 Scheduling under 1 and 4 is
nonpreemptive

<When scheduling decisions take place>
 When a process ...
1. Switches from running to waiting
state

2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

 All other scheduling preemptive

<nonpreemptive>

once the cpu has been allocated to a process, the process
keeps the cpu until it terminates or switches to a waiting
state.

<nonpreemptive>

Aka cooperative

assume a cooperative process.
let that process decide and let's not interrupt it.

<modern operating systems>

preemptive
or nonpreemtive?

<Cooperative>

 Microsoft Windows 3.x. (pre 1995)

 Mac pre OS X (1984 – 2000)

 Commodore 64

<preemptive>

 Microsoft Windows OSs starting w/
Windows 95

 Mac OS X uses preemptive scheduling

 Pre-OS x versions used “cooperative
scheduling”

 Linux, BeOS, Symbian OS,
Solaris,Android, iOS, all
preemptive

<Dispatcher>

 Dispatcher module gives control of the
CPU to the process selected by the
short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the
user program to restart that program

<Dispatch Latency>

<Dispatch Latency>

Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

<summary>

 Algorithms important for knowing history
 Algorithms in current use today

 Multi-level feedback queue
 Algorithms that give better results but
take too long to run.

 Multicore challenges

<What criteria>

What criteria should we use to schedule
processes?

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

Poll: how busy are our CPUs?

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

 Latency (avg) – average time from when a
task arrives until it completes

Maximizing throughput may not
minimize latency

Example: 100 jobs arrive together. One
takes 100 seconds and the rest 1.

Running the first first and then running
the rest yields and avg. latency of
149.5 s (100 + 101 + 102 …)

Running the short jobs first yields an
avg. latency of 51.5s.

Latency is 3x better but throughput is the
same.

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

 Latency (avg) – average time from when a
task arrives until it completes

 Latency (99%) - time required by 99% of
tasks to complete.

(minimize variance of latencies)

users would be more satisfied with an UI
that processes each input in 100ms than
one that usually processes input in
50ms but with an occasional 5 sec. pause

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

 latency – amount of time to execute a
particular process

 Waiting time – amount of time a process
has been waiting in the ready queue

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

 Turnaround time – amount of time to
execute a particular process

 Waiting time – amount of time a process
has been waiting in the ready queue

 Response time – amount of time it takes
from when a request was submitted until
the first response is produced, not
output (for time-sharing environment)

<What criteria>

 CPU utilization – keep the CPU as busy
as possible (40-90%)

 Throughput – # of processes that
complete their execution per time unit

 Turnaround time – amount of time to
execute a particular process

 Waiting time – amount of time a process
has been waiting in the ready queue

 Response time – amount of time it takes
from when a request was submitted until
the first response is produced, not
output (for time-sharing environment)

 Real time guarantees – guaranteeing a
certain amount of resources by a
deadline.

<Optimization Criteria>

 MAX
 CPU utilization
 Throughput

 MIN
 Turnaround time
 Waiting time
 Response time

<Optimization Criteria>

 MAX
 CPU utilization
 Throughput

 MIN
 Turnaround time
 Waiting time
 Response time

 These are performance related

<Optimization Criteria>
non performance related

 Predictability
 Job should run in the same amount
of time regardless of total system
load

 Response times should not vary
 Fairness

 Don't starve any processes
 Enforce priorities

 Favor high priority processes
 Balance resources

 Keep all resources busy

First-Come, First-Served (FCFS)
Scheduling

Process Burst Time
P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the order:
P1 , P2 , P3
The Gantt Chart for the schedule is:

avg. wait time?

P1 P2 P3

24 27 300

First-Come, First-Served (FCFS)
Scheduling

Process Burst Time
P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the order:
P2 , P3 , P1

The Gantt Chart for the schedule is:

avg. wait time?
Better or worse than previous ordering?

http://youtu.be/mAPRrdgYU7o

http://youtu.be/mAPRrdgYU7o
http://youtu.be/mAPRrdgYU7o

First-Come, First-Served (FCFS)
Scheduling

Process Burst Time
P1 24
 P2 3
 P3 3

 Suppose that the processes arrive in the
order: P2 , P3 , P1

The Gantt Chart for the schedule is:

avg. wait time?
Better or worse than previous ordering?

Convoy effect short process behind long process

Shortest-Job-First (SJF) Scheduling

Associate with each process the length
of its next CPU burst. Use these
lengths to schedule the process with
the shortest time

Shortest-Job-First (SJF) Scheduling

Two schemes:
nonpreemptive – once CPU given to the
process it cannot be preempted until
completes its CPU burst

preemptive – if a new process arrives with
CPU burst length less than remaining time
of current executing process, preempt.
This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

Process Burst Time
P1 6
 P2 8
 P3 7
 P4 3

 Average waiting time

Example of Non-Preemptive SJF

P4
P3 P2

P1

3 9 16 24

Process Arrival TimeBurst Time
P1 0 6
 P2 0 8
 P3 1 7
 P4 2 3

 Average waiting time

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

FCFS
Nonpreemtive SJF
SRTF (Shortest Remaining Time First)

Team Work

<team work>

SJF

 Optimal

<recap>

Shortest-Job-First (SJF) Scheduling

Associate with each process the length
of its next CPU burst. Use these
lengths to schedule the process with
the shortest time

<anybody see a problem w/ this?>

Shortest-Job-First (SJF) Scheduling

Associate with each process the length
of its next CPU burst. Use these
lengths to schedule the process with
the shortest time

Determining Length of Next CPU
Burst

 Can only estimate the length
 Can be done by using the length of
previous CPU bursts, using
exponential averaging

τ
n + 1

 = αt
n
 + (1 - α) τ

n

1. t = actual length of nth CPU burst
 τ

n
 = past history.

2. τ

n + 1
 = predicted value for next CPU burst

3. 0 < α < 1

<exponential averaging>

τ
n + 1

 = αt
n
 + (1 - α) τ

n

 α = 1?
 α = 0?

 Good estimates with 1/2
 each successive term has less weight than its

predecessor

Prediction of the Length of the Next
CPU Burst

a = ½ t0 = 10

Prediction of the Length of the Next
CPU Burst

a = ½ t0 = 10

<round robin>

Round Robin (RR)

 Each process gets a small unit of CPU
time (time quantum), usually 10-100
milliseconds.

 Once this time has elapsed, the
process is preempted and placed at
the end of the ready queue.

 If there are n processes in the ready
queue and the time quantum is q, then no
process waits more than __ time units.

Round Robin (RR)

 To implement RR:
 we keep the ready queue as a FIFO
queue of processes.

 New processes are added to the tail
of the ready queue.

 The CPU scheduler picks the first
process on the ready queue, sets a
timer to interrupt after 1 time
quantum, and dispatches the
process.

Round Robin (RR)

 Then one of two things will happen:

Round Robin (RR)

 Then one of two things will happen:
 The process will have a CPU burst
of less than 1 quantum and process
releases CPU voluntarily

 If the process has a CPU burst
greater than 1 quantum the timer
goes off causing an interrupt to
the OS. Context switch occurs and
process gets put on tail of queue

<Choosing q>

 Very large—degenerates to which
scheduler?

 Very small—dispatch time dominates
 Rule of thumb—for better turnaround
time, quantum should be slightly greater
than time of 'typical job' CPU burst

Turnaround time varies /w time quantum

Rule of thumb:
80% of CPU bursts
should be shorter
than time
quantum

Time quantum and context switch time

Example of RR with Time Quantum =
20

ProcessBurst Time
P1 53
 P2 17
 P3 68
 P4 24

 What is the Gantt chart?

 Typically, higher average
turnaround than SJF, but better
response

<round robin>

 Typically higher average turnaround
than SJF

 But better response

<Priority Scheduling>

 Prefer one process over another

 One common implementation
 A priority number (integer) is
associated with each process

 OS schedules the process w/ the highest
priority (smallest integer = highest
priority) - mac/linux -20 to 20

 SJF is a priority scheduling where
priority is the predicted next CPU
burst time.

 nice renice

<Priority Scheduling>

 Anybody see any problems with this?

<Priority Scheduling>

 Problem: Starvation – low priority
processes may never execute

 Solution: Aging—as time progresses
increase the priority of a process.

Multilevel Priority Queue

 Ready queue is divided into n
queues, each w/ its own scheduling
algorithm, e.g.,

 Foreground (interactive) – RR
 Background – FCFS

 Now need to schedule between queues

Linux 2.4 → 2.6

 Linux 2.4 all processes one ready
queue

 When scheduler ran it looked for
the highest priority job on the
queue.

 What do people think?

Linux 2.4 → 2.6

 Linux 2.4 all processes one ready
queue

 When scheduler ran it looked for
the highest priority job on the
queue.

 What do people think?
 How could we improve that?

<Scheduling done between queues>

 Fixed priority scheduling (serve
all from foreground then from
background)

 Doesn't solve starvation
 Time slice – each queue gets a
certain amount of CPU time which it
can schedule among its processes.
e.g.

 80% to foreground in RR
 20% to background in FCFS.

<Multilevel Scheduling Design>

How to avoid undue increase in
turnaround time for longer processes
when short new jobs regularly enter the
system

<Multilevel scheduling design>

 Solution 1: vary preemption times
according to queue
 Processes in lower priority queues have
longer time slices.

 Solution 2: promote a process to a
higher queue
 After it spends a certain amount of time
waiting for service in its current queue
move it up

 Solution 3 ...

<Multilevel scheduling design>

 Solution 3: allocate fixed share of
CPU time to jobs
 If process doesn't use its share give it
to other processes

for, ex. Linux Q=200ms

 Variation on this idea: lottery
scheduling

 Assign a process “tickets” (# of tickets is
share)

 Pick random number and run the process w/ the
winning ticket

Multilevel Queue Scheduling

Processes permanently
assigned to one queue
based on some property

each queue has own
scheduling algorithm

scheduling among
queues:
 absolute
 timeslice

Multilevel Feedback Queue
 A process can move between the various
queues; aging can be implemented this
way

 Multilevel-feedback-queue scheduler
defined by the following parameters:
 number of queues
 scheduling algorithms for each queue
 method used to determine when to upgrade a
process

 method used to determine when to demote a
process

 method used to determine which queue a
process will enter when that process needs
service

<example of multilevel feedback
queue>

 Three queues
 q0—time quantum 8 milliseconds
 q1—time quantum 16 milliseconds
 q2—FCFS

<example of multilevel feedback
queue>

 Scheduling
 A new job enters queue q0, which is
served RR. When it gains CPU, job
receives 8ms. If it doesn't finish, it
is moved to queue q1

 At q1 job is again serviced RR and
receives 16 additional ms. If it does
not complete it is preempted and moved
to queue q2.

 At q2 the job is serviced FCFS

Multilevel Feedback Queues

Overload Control

servers typically have highly
variable load

Flash crowd: emergency servers

Ebay auction

Ticketmaster

Live blogging of event

Can't solve w/ scheduling

Solution 1: reduce work

Distasteful but sometimes necessary

- reject requests
- do less work per request

– Switch from 720P to 480i
– Serve static pages instead of

dynamically generated ones
- turn off other services (mail
server)

Solution 2: increase resources

- cloud services
 Amazon aws

- squarespace example

Worksheet

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

