Adversarial Search

Chapter 6
Section 1 - 4



Outline

* Optimal decisions
* Q-3 pruning

* Imperfect, real-time decisions



Games vs. search problems

* "Unpredictable” opponent -> specitying a move for
every possible opponent reply

* Time limits -> unlikely to find goal, must
approximate



minimax - pasic 1gdea
=

1 -turn game



2 turn game - opponents move




2 turn game - opponents move
.

i
YAARN RN RN

Our thinking is “if I go here then my opponent will go there”




3 turn game - my move




minimax
o5

/xm

\\ mini /l \
"] I

\\1 1




Game tree (2-player,
deterministic, turns)

MAX (X)

MIN (O)

MAX (X)

MIN (O)

OOOOOOOOOOOOO




Minimax

» Perfect play for deterministic games

* |dea: choose move to position with highest minimax
value
= pbest achievable payoft against best play

e E.9., 2-ply game:



Minimax
MAX A\ 3

MIN \/ \/ 2




Minimax algorithm

function MINIMAX-DECISION(state) returns an action

v+ MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U< —0C
for a,sin SUCCESSORS(state) do
v MAX(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U 4— 00
for a,sin SUCCESSORS(state) do
v MIN(v, MAX-VALUE(s))
return v




Properties of minimax

« Complete”? Yes (if tree is finite)
e Optimal? Yes (against an optimal opponent)
« Time complexity? O(b™)

o Space complexity? O(bm) (depth-first exploration)

e For chess, b = 35, m =100 for "reasonable” games
-> exact solution completely infeasible

2551552067298685292412115015142558763019041448816101932417677844077146725823993736
5843732987043555789782336195637736653285543297897675074636936187744140625L



a-@ pruning example

MAX 23

MIN

: 2 4



a-@ pruning example




a-@ pruning example

MAX [\ 23

MIN /3 \/ £2 \/<14



a-@ pruning example

MAX [\ 23

MIN /3 \/ £2




a-@ pruning example
MAX AP 3

MIN \/ 3 \/ £2




Properties of a-3

Pruning does not affect final result
Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = O(b"2)
- doubles depth of search

A simple example of the value of reasoning about
which computations are relevant (a form of
metareasoning)



Why Is it called a-37

e A Is the value of the best
(i.e., highest-value) MAX
choice found so far at
any choice point along
the path for max MIN

If v is worse than a, max
will avoid it

* prune that branch BEAS

e Define 3 similarly for min MIN Vv



The a-3 algorithm

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

v+ MAX-VALUE(state, —o0, +00)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, c, ) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U4 —00
for a,sin SUCCESSORS(state) do
v MAX(v, MIN-VALUE(S, o, 3))
if v > 5 then return v
a — Max(a, v)
return v




The a-3 algorithm

function MIN-VALUE(state, o, 3) returns a utility value
inputs: state, current state in game
«, the value of the best alternative for MAX along the path to state
3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST(state) then return UTILITY(state)
U< +0Q
for a,sin SUCCESSORS(state) do
v4 MIN(v, MAX-VALUE(S, o, 3))
if v < a then return v
B+ MIN(S, v)
return v




Resource lImits aka
horizon problem

Suppose we have 100 secs, explore 10* nodes/sec
10° nodes per move

* Standard approach:

* cutoff test:
e.qg., depth limit (perhaps add quiescence search)

* evaluation function
» = estimated desirability of position



Evaluation functions

* For chess, typically linear weighted sum of features
Eval(s) = w1 f1(S) + wa f2(S) + ... + Wn fr(S)

e.g., wi = 9 with
o fy(s) = (number of white queens) — (number of
black queens), etc.



Cutting off search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice”

b" = 106, b=35 -> m=4

* 4-ply lookahead is a hopeless chess player!

e 4-ply = human novice
o 8-ply = typical PC, human master
« 12-ply = Deep Blue, Kasparov



Deterministic games in
practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a precomputed endgame database
defining perfect play for all positions involving 8 or fewer pieces on the
board, a total of 444 billion positions.

Chess: Deep Blue defeated human world champion Garry Kasparov in
a six-game match in 1997. Deep Blue searches 200 million positions
per second, uses very sophisticated evaluation, and undisclosed
methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.



summary

Games are fun to work on!
They illustrate several important points about Al

perfection Is unattainable -> must approximate

good idea to think about what to think about



