## NOISE STOP WORDS

|                  | 58    | 100            | 250    | 500   | 1000  |
|------------------|-------|----------------|--------|-------|-------|
| Bagging<br>C4.5  | 96.06 | 97.58          | 99. 38 | 99.52 | 99.52 |
| C4.5             | 92.99 | 96.74          | 99. 18 | 99.48 | 99.5  |
| Hyperpipes       | 72.69 | 84.23          | 94.91  | 97.67 | 97.55 |
| KNN              | 94.79 | 97.36          | 98. 12 | 97.86 | 97.26 |
| Multilayer<br>P. | 96.21 | 9 <b>8</b> .06 | 99. 18 | 99.52 | 99.62 |
| Naive<br>Bayes   | 79.31 | 91.41          | 96.98  | 98.61 | 98.27 |
| NBTree           | 94.31 | 96.85          | 98.8   | 99.25 | 99.4  |
| NN               | 95.2  | 97.74          | 98.54  | 98.27 | 97.6  |
| SMO-Poly         | 92.23 | 97.41          | 99.09  | 99.5  | 99.78 |
| SMO-RBF          | 77.39 | 89.87          | 94.29  | 97.77 | 98.97 |

### CURSE OF DIMENSIONALITY MOST DATA MINING TECHNIQUES NOT EFFECTIVE FOR HIGH-DIMENSION DATA



## Google Research Blog

The latest news from Research at Google

#### All Our N-gram are Belong to You

1,024,908,267,229 running words of text

### CURSE OF DIMENSIONALITY MOST DATA MINING TECHNIQUES NOT EFFECTIVE FOR HIGH-DIMENSION DATA

"The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in lowdimensional settings such as the three-dimensional physical space of everyday experience."

The Book of Knowledge

"The curse of dimensionality in the k-NN context basically means that Euclidean distance is unhelpful in high dimensions because all vectors are almost equidistant to the search query vector (imagine multiple points lying more or less on a circle with the query point at the center; the distance from the query to all data points in the search space is almost the same)."

The Book of Knowledge

### **CURSE OF DIMENSIONALITY** QUERY ACCURACY AND EFFICIENCY DEGRADE RAPIDLY AS THE DIMENSION INCREASES.

## APPLICATIONS OF DIMENSIONALITY REDUCTION

- Image retrieval
- text mining
- face recognition
- handwritten digit recognition
- intrusion detection
- microarray data analysis



**Digital Libraries** 

**Solution:** to apply dimensionality reduction

**DOCUMENT CLASSIFICATION** 

#### Terms $T_1 T_2 \dots T_N$ С Sports 12 $\mathbf{D}_1$ Travel $\mathbf{D}_2$ 3 10 ..... 28 **Documents** DM ..... 16 11 Jobs

- Task: To classify unlabeled documents into categories
- Challenge: thousands of terms



- Task: To classify novel samples into known disease types (disease diagnosis)
- Challenge: thousands of genes, few samples
- Solution: to apply dimensionality reduction

| Gene<br>Sample | M23197_at | U66497_at | M92287_at | 1 | Class |
|----------------|-----------|-----------|-----------|---|-------|
| Sample 1       | 261       | 88        | 4778      |   | ALL   |
| Sample 2       | 101       | 74        | 2700      |   | ALL   |
| Sample 3       | 1450      | 34        | 498       |   | AML   |
|                |           |           |           |   |       |
|                | •         | •         |           |   | · ·   |
|                |           |           |           |   |       |

**Expression Microarray Data Set** 

## **GENE EXPRESSION** MICROARRAY ANALYSIS



## MAJOR TECHNIQUES OF DIMENSIONALITY REDUCTION

- feature selection
- feature extraction (aka reduction)

## FEATURE SELECTION

- Definition: A process that chooses an optimal subset of features according to a objective function
- Objectives:
  - To reduce dimensionality and remove noise
  - Improve learning speed
  - Improve accuracy

## HOW?

## TRYING TO FIND THE OPTIMAL SUBSET

'OPTIMAL' FOR ENTIRE WORLD BUT WE ONLY HAVE OUR SMALL DATA SET.

## SOLUTION

## EXHAUSTIVELY EXAMINE ALL THE SUBSETS AND PICK THE BEST ONE.

## PROBLEM

#### THAT WORD 'EXHAUSTIVELY' AND THE COMBINATORIAL NATURE OF 'EXHAUSTIVELY'



#### 100 features and I want to select 10





- 100 features and I want to select 10
- 100 x 99 x 98 x 97...
- 62,815,650,955,529,472,000



- Let's say our training set has 10,000 instances
- takes 10 seconds to training and evaluate the classifier.
- take trillions of years to find the optimal subset.

## **MORE REALISTIC EXAMPLE**

- 100,000 features and I want to select 100
- roughly 100k x 100k x 100k x 100k...
- 100,000<sup>100</sup>

#### OPTIMAL - EXHAUSTIVE

## **PRETTY GOOD - HEURISTIC**

## FEATURE RANKING

- weighting and ranking individual features
- selecting top-ranked ones for feature selection
- efficiency (not n!) what is it?

## FEATURE RANKING

- weighting and ranking individual features
- selecting top-ranked ones for feature selection
- efficiency O(n)
- easy to implement
- Disadvantage: unable to consider correlation between features. (height in feet vs. height in inches). or height and weight work well as a pair.

## ENTROPY & INFORMATION GAIN

 $H(X) = -\sum P(x_i) \log_2(P(x_i))$ 

## IG(X|Y) = H(X) - H(X|Y)

## METHOD

- 100,000 features we want to reduce to 100
- compute information gain of all 100k features
- pick the 100 best

## CLASSIFICATION ACCURACY METHOD

- 100,000 features and want to reduce to 100
- run classifier using 1 feature at a time
- pick 100 best performing features (based on accuracy)
- ~1 day of processing
- (improvement over trillions of years)

### CLASSIFICATION ACCURACY METHOD

- directly aimed at improving accuracy
- drawback 1: time consuming (maybe)
- drawback 2: dependent on classifier being used (maybe this is a good thing)



## CAN AUTOMATE PROCESS WRAPPER

## THAT WAS FEATURE SELECTION EASY

# FEATURE REDUCTION

## FEATURE REDUCTION

- all the features are used
- we map (linear map) a higher dimensional space to a lower dimensional one.
- more on this in a later class.